编辑:
2015-12-19
2、指数函数的图象和性质
a>1
0
图象特征
函数性质
向x、y轴正负方向无限延伸
函数的定义域为R
图象关于原点和y轴不对称
非奇非偶函数
函数图象都在x轴上方
函数的值域为R+
函数图象都过定点(0,1)
自左向右看,
图象逐渐上升
自左向右看,
图象逐渐下降
增函数
减函数
在第一象限内的图象纵坐标都大于1
在第一象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都大于1
图象上升趋势是越来越陡
图象上升趋势是越来越缓
函数值开始增长较慢,到了某一值后增长速度极快;
函数值开始减小极快,到了某一值后减小速度较慢;
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上,值域是或;
(2)若,则;取遍所有正数当且仅当;
(3)对于指数函数,总有;
(4)当时,若,则;
二、对数函数
(一)对数
1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)
说明:1注意底数的限制,且;
2;
3注意对数的书写格式.
两个重要对数:
1常用对数:以10为底的对数;
2自然对数:以无理数为底的对数的对数.
对数式与指数式的互化
对数式指数式
对数底数←→幂底数
对数←→指数
真数←→幂
(二)对数的运算性质
如果,且,,,那么:
1?+;
2-;
3.
注意:换底公式
(,且;,且;).
利用换底公式推导下面的结论(1);(2).
标签:高一数学必修
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。