您当前所在位置:首页 > 高中 > 高三 > 高三数学 > 高三数学专项练习

2014高三必修同步数学练习等差数列

编辑:sx_yangk

2014-11-06

高中学习是一个系统的过程,大家一定要好好把握高中,威廉希尔app 小编为大家整理了2014高三必修同步数学练习,希望大家喜欢。

1.下列各式,能用基本不等式直接求得最值的是(  )

A.x+12x   B.x2-1+1x2-1

C.2x+2-x   D.x(1-x)

答案:C

2.函数y=3x2+6x2+1的最小值是(  )

A.32-3   B.-3

C.62   D.62-3

解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)≥3(22-1)=62-3.

3.已知m、n∈R,mn=100,则m2+n2的最小值是(  )

A.200   B.100

C.50   D.20

解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.

4.给出下面四个推导过程:

①∵a,b∈(0,+∞),∴ba+ab≥2ba•ab=2;

②∵x,y∈(0,+∞),∴lgx+lgy≥2lgx•lgy;

③∵a∈R,a≠0,∴4a+a ≥24a•a=4;

④∵x,y∈R,,xy<0,∴xy+yx=-[(-xy)+(-yx)]≤-2-xy-yx=-2.

其中正确的推导过程为(  )

A.①②   B.②③

C.③④   D.①④

解析:选D.从基本不等式成立的条件考虑.

①∵a,b∈(0,+∞),∴ba,ab∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;

②虽然x,y∈(0,+∞),但当x∈(0,1)时,lgx是负数,y∈(0,1)时,lgy是负数,∴②的推导过程是错误的;

③∵a∈R,不符合基本不等式的条件,

∴4a+a≥24a•a=4是错误的;

④由xy<0得xy,yx均为负数,但在推导过程中将全体xy+yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.

在高中复习阶段,大家一定要多练习题,掌握考题的规律,掌握常考的知识,这样有助于提高大家的分数。威廉希尔app 为大家整理了2014高三必修同步数学练习,供大家参考。更多相关内容请点击进入高三数学专项练习栏目。

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。