您当前所在位置:首页 > 高中 > 高三 > 高三数学 > 高三数学知识点

高中高三数学知识点函数值域讲解

编辑:sx_zhangjh

2014-09-05

高中高三数学知识点函数值域讲解

知识点是关键,为了能够使同学们在数学方面有所建树,小编特此整理了高三数学知识点函数值域讲解,以供大家参考。

(1)配方法:若函数为一元二次函数,则可以用这种方法求值域,关键在于正确化成完全平方式。

(2)换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。

(3)判别式法:若函数为分式结构,且分母中含有未知数x²,则常用此法。通常去掉分母转化为一元二次方程,再由判别式△≥0,确定y的范围,即原函数的值域

(4)不等式法:借助于重要不等式a+b≥√ab(a>0,b>0)求函数的值域。用不等式法求值域时,要注意均值不等式的使用条件“一正,二定,三相等。”

(5)反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。

(6)单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)

(7)数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。

注意:

(1)用换元法求值域时,认真分析换元后变量的范围变化;用判别式法求函数值域时,一定要注意自变量x是否属于R。

(2)用不等式法求函数值域时,需要认真分析其等号能否成立;利用单调性求函数值域时,准确找出其单调区间是关键。分段函数的值域应分段分析,再取并集。

(3)不管用哪种方法求函数值域,都一定要先确定其定义域,这是求函数的重要环节。

以上就是高三数学知识点函数值域讲解,更多精彩请进入高中频道。

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。