编辑:
2015-10-10
②若为一元二次方程,则
(1)若Δ>0,则直线和抛物线相交,有两个交点(或两个公共点);
(2)若Δ=0,则直线和抛物线相切,有一个切点;
(3)若Δ<0,则直线和抛物线相离,无公共点。
注意:如说直线和抛物线有一个公共点,则要考虑两种情况:一个切点和一个交点
4.直线被圆锥曲线截得的弦长公式:
当直线的斜率k存在时,直线y=kx+b与圆锥曲线相交于 , 两点,
弦长公式:
当k存在且不为零时, 弦长公式还可以写成:
知识点四:曲线的方程和方程的曲线的关系
一般地,在直角坐标系中,如果某曲线 (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程 的实数解建立了如下的关系:
(1)曲线 上所有点的坐标都是方程 的解;
(2)以方程 的解为坐标的点都在曲线 上.
那么,方程 叫做曲线 的方程;曲线 叫做方程 的曲线.
知识点五:求曲线的方程
1. 定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x,y)所满足的方程 表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.
2. 坐标法求曲线方程的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何因素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:把代数运算结果“翻译”成几何结论.
通过坐标法,把点和坐标、曲线和方程联系起来,实现了形和数的统一.
用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果“翻译”成相应的几何结论.这就是用坐标法解决平面几何问题的“三步曲”。
3.求轨迹方程的常用方法:直接法、定义法、代入法、参数法等。
规律方法指导
1.圆锥曲线在解析几何中占主导地位,在整个高中数学中也扮演着主要角色,充分展示了数学思想的精华部分,与其它数学知识相连----平面几何、函数、三角、不等式、复数,有层次地训练和提高了学生的素质与能力.对于圆锥曲线的综合题的解决,要有良好的逻辑推理能力和计算能力,能准确、灵活运用等价转化思想、数形结合思想,对于二次方程、二次函数、解不等式和不等式组的知识要在较高层次上落实.圆锥曲线综合题是历年数学高考的热点及难点.
2.解析几何图形结构、问题结构多,且易于发散,一旦形成为图形或知识点的综合,往往最具运算量、最为繁难复杂.因此,有时即便是明确了解法甚至较细的步骤,解题过程当中也常常被卡住,算不到底、算不出正确结果也是常有的事。因此,如何解决运算量问题,对于解题成功与否至关重要.解决运算问题,可以有以下措施:
(1)不断提高运算和恒等变形能力。注意培养观察问题、分析问题、转化问题、解决问题的能力,避免思维定势,提高思维灵活性;具体审题中多收集些信息,综观全局,权衡利弊,再决定解题策略;加强训练运算基本功,不断提高恒等变形的能力.
(2)善于运用平面几何性质来解题问题。解题处理方式不同,可能繁简大相径庭,若考虑问题的几何特征,充分利用图形几何性质,对于解决运算量会大有裨益,这一点对于圆锥曲线综合题的处理很重要.
(3)注意解析法与各种数学方法结合。当所求点的坐标直接解决有困难时,往往引进参数或参数方程起到解决问题的桥梁作用,引进合适的参数,进行设而不求的计算方式,在解析几何中是普遍的,但应注意不断积累消参经验;相应元替换法也是常用的策略.
3.圆锥曲线综合题类型
(1)用待定系数法求圆锥曲线方程
①数形结合:先定型,再定量,注意区分解析条件与纯几何条件,如果位置不确定时,考虑是否两解.在图形上标出已知条件,检查轴上的点、垂直于轴的直线的位置是否准确;
②方程思想:n个未知数,列够n个独立的方程,并注意韦达定理的使用:
③注意“点在线上”条件的使用.
(2)求轨迹方程
基本方法:定义法、直接代入法、参数法(利用已知参数方程法或自设参数).
注意:
①注意限制;
②求轨迹方程与求轨迹的区别。求轨迹是要求先求轨迹方程再描述该轨迹方程所表示的曲线类型及相应的几何特征;
③n个未知数,列够n-1个独立方程,特别注意考虑是否可利用定义直接列出方程.
(3)求取值范围或最值
①函数方法----将待求范围参数表示为另一个变量的函数,注意求函数的定义域。
②方程与不等式组----n个未知数,列够n个独立方程或不等式,注意归纳总结列不等式的方法:
③利用几何性质求参数范围;
④利用不等式性质(结合几何性质)求参数范同.
最后,希望精品小编整理的高二数学选修1-1第二章圆锥曲线与方程测试题对您有所帮助,祝同学们学习进步。
相关推荐:
标签:高二数学试题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。