您当前所在位置:首页 > 高中 > 高二 > 高二数学 > 高二数学试题

蚌埠二中2014年高二数学第二学期期末考试试题

编辑:

2014-06-26

8.已知双曲线x2a2-y2b2=1(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 ( )

A.[1,2] B.(1,2) C.[2,+∞) D.(2,+∞)

9.如图是抛物线形拱桥,当水面在图中位置时,拱顶离水面2米,

水面宽4米.水下降1米后,水面宽为(  )

A. 米 B. 米 C. 米 D. 米

10.已知抛物线 的焦点 与椭圆 的一个焦点重合,它们在第一象限内的交点为 ,且 与 轴垂直,则椭圆的离心率为 ( )

A.     B.     C.     D.

第Ⅱ卷(填空与解答题,共100分)

二、填空题:本大题共5小题,每小题5分,共25分。请将答案直接填在题中横线上。

11.已知 , ( 两两互相垂直),那么 = ,

12.设椭圆C1的离心率为 ,焦点在x轴上且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为 _____________。

13.直线l: 与椭圆 相交A,B两点,点C是椭圆上的动点,则 面积的最大值为 。

14. 过点 且被点 平分的双曲线 的弦所在直线方程为 _.

15. 为过抛物线 焦点 的一条弦,设 ,以下结论正确的是____________________,

① 且 ② 的最小值为 ③以 为直径的圆与 轴相切;

三、解答题:本大题共6小题,共74分。解答应写出说明文字、演算式、证明步骤。

16.(本小题满分12分) 设命题 :方程 表示的图象是双曲线;命题 : , .求使“ 且 ”为真命题时,实数 的取值范围.

17.(本小题满分12分)三棱柱 中, 分别是 、 上的点,

且 , 。设 , , .

(Ⅰ)试用 表示向量 ;

(Ⅱ)若 , ,

,求MN的长.。

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。