编辑:sx_chenj
2014-04-17
14学年数学高二期中试卷第二学期
数学高二期中试卷第二学期一.选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求)
1.若复数 、 、 在复平面 上的对应点分别为 、 、C, 的中点 ,则向量 对应的复数是( )
A. B.
C. D.
2.已知全集U=R,集合 , ,则 = ( )
A. B.
C. D.
3.命题“存在 , ”的否定是( )
A.不存在 , B.存在 ,
C.对任意的 , D.对任意的 ,
4.设随机变量 服从正态分布 (2,9),若 ,则 ( )
A. 1 B. 2
C. 3 D. 4
5.下边为一个求20个数的平均数的程序,在横线上应填充的语句为( )
A. B.
C. D.
6.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方 案共有( )
A. 24种 B. 36种
C. 38种 D. 108种
7.设函数 ,则 的值为( )
A. B. C. D.
8.若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是( )
A.a<-1 B.a>1
C.-1
9.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )
A. B.
C. D.
10.二项式 的展开式的常数项为第( )项
A. 17 B. 18
C. 19 D. 20
11.已知点 是双曲线 右支上一点, , 分别为双曲线的左、右焦点, 为 的内心,若 成立。则 的值为( )
A. B.
C. D.
12.已知定义在R上的函数 的导函数 的大致图象如图所示,则下列结论一定正确的是
A. B.
C. D.
二、填空题(本大题包括4小题,每小题5分,共20分)
13.已知函数 (其中 )在区间 上单调递减,则实数 的取值范围 为 。
14. 的展开式中 项的系数是15,则 的值为 。
15.执行下边的程序框图,若 ,则输出的 __ _______.
16. 把数列 的所有项按照从大到小,左大右小的原则写成如图所示的数表,第 行有 个数,第 行的第 个数(从左数起)记为 ,则 可记为_________.
三.解答题
17(12分).已知数列 满足 ,且 。
(Ⅰ)求 , , 的值;
(Ⅱ)猜想 的通项公式,并用数学归纳法证明你的猜想。
18(12分).在一个盒子中,放有标号分别为 , , 的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为 、 ,记 .
(Ⅰ)求随机变量 的最大值,并求事件“ 取得最大值”的概率;
(Ⅱ)求随机变量 的分布列和数学期望.
19.(12分)
如图,四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。
(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE。
20(12分).已知椭圆 的离心率为 ,并且直线 是抛物线 的一条切线。
(1)求椭圆的方程
(2)过点 的动直线 交椭圆 于 、 两点,试问:在直角坐标平面上是否存在一个定点 ,使得以 为直径的圆恒过点 ?若存在求出 的坐标;若不存在,说明理由。
21(12分).已知函数 , 。
(Ⅰ)求函数 的单调递增区间;
(Ⅱ)求函数 在区间 上的最小值;
(Ⅲ)试判断方程 (其中 )是否有实数解 ?并说明理由。
四.请在22,23,24 三题中任选一题作答
22.(10分)选修4-1:几何证明选讲
如图,四边形 内接于 , ,过 点的切线交 的延长线于 点。求证: 。
23.(10分)选修4-4:坐标系与参数方程
在极坐标系中,极点为 ,已知曲线 : 与曲线 : 交于不同的两点 .
(1)求 的值;
(2)求过点 且与直线 平行的直线 的极坐标方程.
24.(10分)选修 4-5:不等式选讲
(Ⅰ)若 与2的大小,并说明理由;
(Ⅱ)设 是 和1中最大的一个,当
相关推荐
标签:高二数学试题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。