您当前所在位置:首页 > 高中 > 高二 > 高二数学 > 高二数学课件

高中数学;什么是概率

编辑:sx_wangha

2012-09-19

【编者按】概率,是我们日常生活中说的比较多的一个词。那么你觉得,我们日常所说的概率,用数学的理论怎么解释呢?换句话说,我们经常说的口头禅,它的基本原理你了解吗?

设实验E的样本空间为S,A为E的事件,B1,B2,...,Bn为S的一个划分,且P(Bi)>0(i=1,2,...,n),则   P(A)=P(A|B1)*P(B1) + P(A|B2)*P(B2) + ... + P(A|Bn)*P(Bn).

一、概率的相关概念

随机事件

在随机试验中,随机事件一般是由若干个基本事件组成的。样本空间Ω的任一子集A称为随机事件。属于事件A的样本点出现,则称事件A发生。

(一)随机事件和概率考查的主要内容有:

(1)事件之间的关系与运算,以及利用它们进行概率计算;

(2)概率的定义及性质,利用概率的性质计算一些事件的概率;

(3)古典概型与几何概型;

(4)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

(5)事件独立性的概念,利用独立性计算事件的概率;

(6)独立重复试验,伯努利概型及有关事件概率的计算。

特点

1.可以在相同的条件下重复进行;

2.每个试验的可能结果不止一个,并且能事先预测试验的所有可能结果;

3.进行一次试验之前不能确定哪一个结果会出现。

必然事件记作Ω,样本空间Ω也是其自身的一个子集,Ω也是一个“随机”事件,每次试验中必定有Ω中的一个样本点出现,必然发生。

不可能事件记作Φ,空集Φ也是样本空间的一个子集,Φ也是一个特殊的“随机”事件,不包含任何样本点,不可能发生。

二、概率的基本公式

等可能事件:P(A)=m/n

互斥事件:P(A+B)=P(A)+P(B)

P(A·B)=0

独立事件:P(A·B)=P(A)·P(B)

二项式:      平均数:np  方差:np(1-p)

几何分布:    平均数:1/p  方差:(1-p)/(p平方)

三、概率经典例题专训

例1:高射炮向敌机发射三发炮弹,每弹击中与否相互独立且每发炮弹击中的概率均为0.3,又知敌机若中一弹,坠毁的概率为0.2,若中两弹,坠毁的概率为0.6,若中三弹,敌机必坠毁。求敌机坠毁的概率。

例2:在100件商品中,有95件合格品,5件次品.从中任取两件计算:(1)2件都是合格品的概率;(2)2件都是次品的概率;(3)1见是合格品,1件是次品的概率.

例3.一颗骰子扔4次,求前三次都出现点数1,且第四次为其他点数的概率?

例4.一颗骰子扔4次,求恰有3次出现点数1的概率?

例5.设A.B.C为三个事件,P(A)=P(B)=P(C)=1/4,P(AC)=1/6,且A与B互不相容 B与C互不相容 求A,B,C都不发生的概率?

例6.设A.B为两个事件,P(A)=0.6,P(B|A-)=0.4,求P(A+B)?

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。