编辑:sx_chenzf
2014-03-06
学习数学最重要的一点就是:新旧结合、注重通法、记忆结论、抠透细节。高考状元数学学习方法由威廉希尔app 收集整理!!!
学了新知识,回头看看旧的东西,你会发现可以用新知识解决许多旧问题,同样只要你善于联系,旧知识照样可以解决新问题。例如:用导数解决函数单调性问题,向量解决立体几何问题,数列证明不等式,当然函数也可解决不等式。因此,知识的结合是很重要的。就说数形结合吧,数没有形直观,形没有数逻辑性强,二者刚好互补。同样,结合意味着化归、转化,如:非等比,等差数列转化为等比,等差数列,甚至各项大于0的等比数列取对数也可化为等差数列。所有公式中,万能公式沟通了三角与实数(只需令tan?A=x?),这不也是一种结合吗?再比如:求?y=x+4/x?的值域,我们可以分?x>0,x<0?,应用均值不等式,但若你令?x?=2tan?A?,则?y?=2(tan?A?+cot?A?)=4/sin2?A?,其值域呼之欲出啊!对结论的记忆不用刻意去记,只要你做一个有心人,平时做题时注意积累就好,利用结论可以迅速解决选择和填空,还可以开阔你的思路呢!?
知识盲点:?
1.空集的特殊性;?
2.不等式系数的不确定性;?
3.消元过程扩大解集;?
4.均值不等式应用中忽视取等条件;?
5.区分最值与极值;?
6.等比数列小心?q?=1的情况;?
7.?a//b即a=xb(b≠0)?;?
8.做题中任何题都应优先定义域;?
9.轨迹及方程问题中注意各轨迹方程的定义,如:圆要求D2+E2-4F>0等;?
10.两圆位置关系与半径的联系。?
易错点:?
1.忽略定义域;
2.分类讨论做不到“不重不漏”;?
3.忽略了定理,定义的限定条件;?
4.向量法求二面角,对其是否大于90度不清楚;?
5.遗漏一些特殊情况,如:空集,求数列通项忽略对?n?=1的验证,忽略导数不存在的点及斜率不存在的情况等。?
数学是思维的体操。且不谈“粒子之小,火箭之速,化工之巧,地球之变,生物之谜,日用之繁”,处处都闪烁应用数学的光芒,高度抽象的纯粹数学,也有其深刻而动人的美丽,堪称艰深难懂而璀璨美丽的艺术。恰如Russell所说:“公正而论,数学不仅拥有真理,而且拥有至高无上的美——一种冷峻严肃的美,如同一尊雕塑。”学习数学不仅为了应试解题,更要培养思考问题的逻辑性与严密性,提升思维品质。?
学好数学关键在于思考。看似枯燥无味的数学公式,细心品味其内涵与外延,也能触摸到深刻的美丽。数学教材要通读,从最基本的概念出发,一步步推导出美丽的结论,前后勾连,交织成严密知识网络。记忆公式要学会举一反三,注意不同条件下结论的变化,掌握公式的推广和特例,衍生出解决问题的有效模式。?
平时做题时,不要满足于记忆解答,要体会每一步的“动机”,才算完成了思维训练。只记住步骤而不思索动机,不像在看书,倒像在校稿。习题要精做,关键在于赋予每道题应有的思维分量。习题要精选精做,每做一题,要归纳解题的入口和关键步骤,尝试着改变条件和结论,探索一类题的解法。?
各类考试有严格的时间、空间限制,要做到快速、准确地解题,必须采取一定解题策略,在“理解题目→拟定方案→执行方案→回顾”四个环节里节约时间,提高准确率,争取拿到所有应得的分数。?
高考数学的题型颇有规律可循,平时多进行定时、定量的解题训练,才能突破弱项,提升速度,找到解题的感觉。?
数学一直是我的强项,可惜高考时由于太过粗心没考出应有水平,我很遗憾。但是,学弟学妹们,现在希望还掌握在你们手中,不管现在成绩如何,还有时间做出调整。只要把握好,高分甚至满分数学和每个人都是等距离的。?
题海战术?
我个人还是比较支持题海战术的。数学考试范围广,题形多。只有多练才能达到多见识的目的,靠典型题目做少量题型得到高分是非常难的。当然,不能盲目做题,要精选题目,而且做完后要总结规律。最好能把做错题目抄录下来,以便最后巩固。?
套题训练?
数学的成绩是练出来的,而且要用符合高考的标准来练,而套题是最符合要求的。我练套题是捏准时间,然后严格打分,通过每星期两三套那样的练下来,找出自己的薄弱知识点,然后重点击破。就这样节节提高,到最后胸有成竹。小建议:套题训练最好留到二轮或者三轮复习时。?
不要马虎?
高考中我就因为马虎而白白丢分,很是遗憾。数学考试中经常听到同学抱怨说:“怎么又马虎粗心了!”或是“这道以前错过的题目怎么又做错了!”为了防止犯低级错误,我的做法是时刻提醒我自己要小心。我经常在考试前在草稿纸或者本子上写上自己平时容易犯的错误,比如一定要记得函数的定义域之类的。然后考试时不停地提醒自己不要犯此类错误,这样效果很好。还有就是,考试时不要总想着做完所有题目后有时间检查,一定要把题做成一遍就过,一遍就对。高考状元数学学习方法由威廉希尔app 收集整理!!!
相关推荐:
标签:高考状元
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。