您当前所在位置:首页 > 高考 > 高考数学 > 高考数学知识点

2017高考数学公式总结

编辑:sx_shangjianm

2017-08-24

高考迫在眉睫,考生都在努力的复习当中,在冲刺阶段应该如何复习呢?快来看看高考数学公式吧~

2017高考数学公式总结:

1,a(1)=a,a(n)为公差为r的等差数列。

1-1,通项公式,

a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.

可用归纳法证明。

n=1时,a(1)=a+(1-1)r=a。成立。

假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r

则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.

通项公式也成立。

因此,由归纳法知,等差数列的通项公式是正确的。

1-2,求和公式,

S(n)=a(1)+a(2)+...+a(n)

=a+(a+r)+...+[a+(n-1)r]

=na+r[1+2+...+(n-1)]

=na+n(n-1)r/2

同样,可用归纳法证明求和公式。(略)

2,a(1)=a,a(n)为公比为r(r不等于0)的等比数列。

2-1,通项公式,

a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).

可用归纳法证明等比数列的通项公式。(略)

2-2,求和公式,

S(n)=a(1)+a(2)+...+a(n)

=a+ar+...+ar^(n-1)

=a[1+r+...+r^(n-1)]

r不等于1时,

S(n)=a[1-r^n]/[1-r]

r=1时,

S(n)=na.

同样,可用归纳法证明求和公式。

高考数学公式整理的很及时吧,在高考的最后复习中,大家一定不要慌,做好最后的复习~考生还想知道更最新信息,就请继续关注【高考数学知识点】。

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。