您当前所在位置:首页 > 高考 > 高考数学 > 高考数学试题

2016年湖南高考数学排列组合专项练习及答案

编辑:

2016-02-23

3.观察下列各式:55=3 12556=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 014的末四位数字为________.

答案:5625

解析:由观察易知55的末四位数字为3125,56的末四位数字为5625,57的末四位数字为8125,58的末四位数字为0625,59的末四位数字为3125,故周期T=4。又由于2 014=503×4+2,因此52 014的末四位数字是5625。

4.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=________。

答案:123

解析:记an+bn=f(n),则f(3)=f(1)+f(2)=1+3=4;

f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11;

f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;

f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;

f(10)=f(8)+f(9)=123,即a10+b10=123。

5.已知正三角形内切圆的半径是其高的,把这个结论推广到空间正四面体,类似的结论是________。

答案:正四面体的内切球的半径是其高的

解析:设正四面体的每个面的面积是S,高是h,内切球半径为R,

由体积分割可得:SR×4=Sh,

所以R=h。

6.观察下列等式:

(1+1)=2×1

(2+1)(2+2)=22×1×3

(3+1)(3+2)(3+3)=23×1×3×5

照此规律,第n个等式可为______________。

答案:(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)

解析:由已知的三个等式左边的变化规律,得第n个等式左边为(n+1)(n+2)…(n+n),由已知的三个等式右边的变化规律,得第n个等式右边为2n与n个奇数之积,即2n×1×3×…×(2n-1)。

7.(2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为=n2+n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:

三角形数N(n,3)=n2+n,

正方形数N(n,4)=n2,

五边形数N(n,5)=n2-n,

六边形数N(n,6)=2n2-n

……

可以推测N(n,k)的表达式,由此计算N(10,24)=____________________________________.

答案:1 000

解析:由N(n,4)=n2,N(n,6)=2n2-n,可以推测:当k为偶数时,N(n,k)=n2+n,

∴N(10,24)=×100+×10=1 100-100=1 000。

8.两点等分单位圆时,有相应正确关系为sin α+sin(π+α)=0;三点等分单位圆时,有相应正确关系为sin α+sin(α+)+sin(α+)=0.由此可以推知:四点等分单位圆时的相应正确关系为________________________。

答案:sin α+sin(α+)+sin(α+π)+sin(α+)=0

解析:由类比推理可知,四点等分单位圆时,α与α+π的终边互为反向延长线,α+与α+的终边互为反向延长线。

9.(2013·陕西)观察下列等式

12=1,

12-22=-3,

12-22+32=6,

12-22+32-42=-10,

照此规律,第n个等式可为________。

答案:12-22+32-42+…+(-1)n+1n2=(-1)n+1。

解析:观察等式左边的式子,每次增加一项,故第n个等式左边有n项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n+1n2。等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,…设此数列为{an},则a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,…,an-an-1=n,各式相加得an-a1=2+3+4+…+n,即an=1+2+3+…+n=。所以第n个等式为12-22+32-42+…+(-1)n+1n2=(-1)n+1。

10.如图1是一个边长为1的正三角形,分别连结这个三角形三边中点,将原三角形剖分成4个三角形(如图2),再分别连结图2中一个小三角形三边的中点,又可将原三角形剖分成7个三角形(如图3),…,依此类推。设第n个图中原三角形被剖分成an个三角形,则第4个图中最小三角形的边长为________;a100=________。

答案:298

解析:由三角形的生成规律得,后面的每一个图形中小三角形的边长均等于前一个图形中小三角形边长的,即最小三角形的边长是以1为首项,为公比的等比数列,则第4个图中最小三角形的边长等于1×=,由a2-a1=a3-a2=…=an-an-1=3可得,数列{an}是首项为1,公差为3的等差数列,则a100=a1+99×3=1+297=298。

排列组合专项练习及答案分享到这里,更多内容请关注高考数学试题栏目。

相关链接

2016年高三数学2月第一次调研理试题 

2016届高考数学第一次模拟试题(文科)  

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。