您当前所在位置:首页 > 高考 > 高考数学 > 高考数学试题

2016年高考数学初等函数专项检测试题与答案

编辑:

2016-01-15

答案

一、选择题

1. D2. B  解析: , 是 的减函数,

3. C 解析:∵函数f(x)是偶函数,∴b=0,此时f(x)=loga|x|.

当a>1时,函数f(x)=loga|x|在(0,+∞)上是增函数,∴f(a+1)>f(2)=f(b-2);

当0

综上,可知f(b-2)

4. C5. C6. C7. B

8. C 解析:∵函数f(x)是偶函数,∴b=0,此时f(x)=loga|x|.

当a>1时,函数f(x)=loga|x|在(0,+∞)上是增函数,∴f(a+1)>f(2)=f(b-2);

当0

综上,可知f(b-2)

9. C10. D

二、填空题

11. -3 解析:∵f(-x)=loga3+x3-x=-loga3-x3+x=-f(x),∴函数为奇函数.

∴f(-2)=-f(2)=-3.

12. 1 解析: 从认知f(x)的性质切入 已知f(x+3)=1-f(x) ① 以-x代替①中的x得f(-x+3)=1-f(-x) ②

又f(x)为偶函数 ∴f(-x)=f(x) ③ ∴由②③得  f(-x+3)=1-f(x)④

∴由①④得 f(3+x)=f(3-x)   f(x)图象关于直线x=3对称   f(-x)=f(6+x) ∴由③得 f(x)=f(6+x)

即f(x)是周期函数,且6是f(x)的一个周期. ⑤  于是由③⑤及另一已知条件得

f(17.5)=f(17.5-3×6)=f(-0.5)=f(0.5)=2×0.5=1

13.         14.

三、解答题

15. 解析:对称轴

当 ,即 时, 是 的递增区间, ;

当 ,即 时, 是 的递减区间, ;

当 ,即 时, 。

16. 解析: ,

对称轴 ,当 时, 是 的递减区间,而 ,

即 与 矛盾,即不存在;

当 时,对称轴 ,而 ,且

即 ,而 ,即

17. 解析:(1)当 时, 为偶函数,

当 时, 为非奇非偶函数;

(2)当 时,

当 时, ,

当 时, 不存在;

当 时,

当 时, ,

当 时,

18. 解析:(1)由对数的意义,分别得1+x>0,1-x>0,即x>-1,x<1.∴函数f(x)的定义域为(-1,+∞),函数g(x)的定义域为(-∞,1),

∴函数h(x)的定义域为(-1,1).

(2)∵对任意的x∈(-1,1),-x∈(-1,1),

h(-x)=f(-x)-g(-x)

=loga(1-x)-loga(1+x)

=g(x)-f(x)=-h(x),

∴h(x)是奇函数.

(3)由f(3)=2,得a=2.

此时h(x)=log2(1+x)-log2(1-x),

由h(x)>0即log2(1+x)-log2(1-x)>0,

∴log2(1+x)>log2(1-x).

由1+x>1-x>0,解得0

故使h(x)>0成立的x的集合是{x|0

初等函数专项检测试题的所有内容,威廉希尔app 高考频道请考生认真仔细的研究,提高自己的成绩。

2016年高考第一轮复习备考专题已经新鲜出炉了,专题包含高考各科第一轮复习要点、复习方法、复习计划、复习试题,大家来一起看看吧~

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。