编辑:sx_liujy
2015-12-31
在我们周围存在着各种各样的物体,它们都占据着空间的一部分,下面是空间几何体的表面积与体积专题训练,请考生及时练习。
一、选择题
1.棱长为2的正四面体的表面积是( ).
A. B.4 C.4 D.16
解析 每个面的面积为:×2×2×=.正四面体的表面积为:4.
答案 C
2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( ).
A.2倍 B.2倍 C.倍 D.倍
解析 由题意知球的半径扩大到原来的倍,则体积V=πR3,知体积扩大到原来的2倍.
答案 B
3.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm2)为( ).
A.48 B.64 C.80 D.120
解析 据三视图知,该几何体是一个正四棱锥(底面边长为8),直观图如图,PE为侧面PAB的边AB上的高,且PE=5.此几何体的侧面积是S=4SPAB=4××8×5=80(cm2).
答案 C
4.已知三棱锥S-ABC的所有顶点都在球O的球面上,ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( ).
A. B. C. D.
解析 在直角三角形ASC中,AC=1,SAC=90°,SC=2,SA==;同理SB=.过A点作SC的垂线交SC于D点,连接DB,因SAC≌△SBC,故BDSC,故SC平面ABD,且平面ABD为等腰三角形,因ASC=30°,故AD=SA=,则ABD的面积为×1×
=,则三棱锥的体积为××2=.
答案 A.某品牌香水瓶的三视图如下(单位:cm),则该几何体的表面积为( ).
A.cm2 B.cm2
C.cm2 D.cm2
解析 该几何体的上下为长方体,中间为圆柱.
S表面积=S下长方体+S上长方体+S圆柱侧-2S圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π××1-2×π2=94+.
答案 C
.已知球的直径SC=4,A,B是该球球面上的两点,AB=,ASC=BSC=30°,则棱锥SABC的体积为( ).
A.3 B.2 C. D.1
解析 由题可知AB一定在与直径SC垂直的小圆面上,作过AB的小圆交直径SC于D,设SD=x,则DC=4-x,此时所求棱锥即分割成两个棱锥SABD和CABD,在SAD和SBD中,由已知条件可得AD=BD=x,又因为SC为直径,所以SBC=SAC=90°,所以DCB=DCA=60°,在BDC中 ,BD=(4-x),所以x=(4-x),所以x=3,AD=BD=,所以三角形ABD为正三角形,所以V=SABD×4=.
答案 C
二、填空题
.已知S、A、B、C是球O表面上的点,SA平面ABC,ABBC,SA=AB=1,BC=,则球O的表面积等于________.
解析 将三棱锥S-ABC补形成以SA、AB、BC为棱的长方体,其对角线SC为球O的直径,所以2R=SC=2,R=1,表面积为4πR2=4π.
答案 4π
.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为,连接顶点和底面中心即为高,可求得高为,所以体积V=×1×1×=.
答案
9.已知某几何体的直观图及三视图如图所示,三视图的轮廓均为正方形,则该几何体的表面积为________.
解析 借助常见的正方体模型解决.由三视图知,该几何体由正方体沿面AB1D1与面CB1D1截去两个角所得,其表面由两个等边三角形、四个直角三角形和一个正方形组成.计算得其表面积为12+4.
答案 12+4
.如图所示,正方体ABCD-A1B1C1D1的棱长为6,则以正方体ABCD-A1B1C1D1的中心为顶点,以平面AB1D1截正方体外接球所得的圆为底面的圆锥的全面积为________.
解析 设O为正方体外接球的球心,则O也是正方体的中心,O到平面AB1D1的距离是体对角线长的,即为.又球的半径是正方体对角线长的一半,即为3,由勾股定理可知,截面圆的半径为=2,圆锥底面面积为S1=π·(2)2=24π,圆锥的母线即为球的半径3,圆锥的侧面积为S2=π×2×3=18π.因此圆锥的全面积为S=S2+S1=18π+24π=(18+24)π.
答案 (18+24)π三、解答题
.一个几何体的三视图如图所示.已知主视图是底边长为1的平行四边形,左视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.
(1)求该几何体的体积V;
(2)求该几何体的表面积S.
解 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,
所以V=1×1×=.
(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形,
S=2×(1×1+1×+1×2)=6+2.
.在直三棱柱ABC-A1B1C1中,底面为直角三角形,ACB=90°,AC=6,BC=CC1=,P是BC1上一动点,如图所示,求CP+PA1的最小值.
解 PA1在平面A1BC1内,PC在平面BCC1内,将其铺平后转化为平面上的问题解决.铺平平面A1BC1、平面BCC1,如图所示.计算A1B=AB1=,BC1=2,又A1C1=6,故A1BC1是A1C1B=90°的直角三角形.
CP+PA1≥A1C.在AC1C中,由余弦定理,得
A1C===5,
故(CP+PA1)min=5..某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.图2、图3分别是该标识墩的主视图和俯视图.(1)请画出该安全标识墩的左视图;
(2)求该安全标识墩的体积.
(1)左视图同主视图,如图所示:
(2)该安全标识墩的体积为
V=VPEFGH+VABCDEFGH
=×402×60+402×20
=64 000(cm3).
.如图(a),在直角梯形ABCD中,ADC=90°,CDAB,AB=4,AD=CD=2,将ADC沿AC折起,使平面ADC平面ABC,得到几何体D-ABC,如图(b)所示.
(1)求证:BC平面ACD;
(2)求几何体D-ABC的体积.
(1)证明 在图中,可得AC=BC=2,
从而AC2+BC2=AB2,
故ACBC,
又平面ADC平面ABC,平面ADC∩平面ABC=AC,BC平面ABC,BC⊥平面ACD.
(2)解 由(1)可知,BC为三棱锥B-ACD的高,BC=2,SACD=2,
VB-ACD=SACD·BC=×2×2=,
由等体积性可知,几何体D-ABC的体积为.
空间几何体的表面积与体积专题训练及答案的全部内容就是这些,威廉希尔app 预祝考生可以取得优异的成绩。
2016年高考第一轮复习备考专题已经新鲜出炉了,专题包含高考各科第一轮复习要点、复习方法、复习计划、复习试题,大家来一起看看吧~
标签:高考数学试题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。