您当前所在位置:首页 > 高考 > 高考数学 > 高考数学试题

2015-2016高考数学一复习统计与统计案例专项练习(含答案)

编辑:

2015-12-07

三、解答题

17.(文)(2014·重庆文,17)20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:

(1)求频率分布直方图中a的值;

(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;

(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.

[分析] 由频率之和为1,求a,然后求出落在[50,60)和[60,70)中的人数,最后用列举法求古典概型的概率.

[解析] (1)组距为10,(2a+3a+6a+7a+2a)×10=200a=1,

a==0.005.

(2)落在[50,60)中的频率为2a×10=20a=0.1,

落在[50,60)中的人数为2.

落在[60,70)中的学生人数为3a×10×20=3×0.005×10×20=3.

(3)设落在[50,60)中的2人成绩为A1,A2,落在[60,70)中的3人为B1,B2,B3.

则从[50,70)中选2人共有10种选法,Ω={(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3)}

其中2人都在[60,70)中的基本事件有3个:(B1,B2),(B1,B3),(B2,B3),故所求概率p=.

(理)(2014·辽宁理,18)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;

(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).

[解析] (1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天是有连续2天日销售量不低于100个且另一天销售量低于50个”,因此

P(A1)=(0.006+0.004+0.002)×50=0.6

P(A2)=0.003×50=0.15,

P(B)=0.6×0.6×0.15×2=0.108.

(2)X可能取的值为0,1,2,3,相应的概率为

P(X=0)=C·(1-0.6)3=0.064,

P(X=1)=C·0.6(1-0.6)2=0.288.

P(X=2)=C·0.62(1-0.6)=0.432.

P(X=3)=C·0.63=0.216.

分布列为

X 0 1 2 3 P 0.064 0.288 0.432 0.216 因为X~B(3,0.6)

所以期望E(X)=3×0.6=1.8,

方差D(X)=3×0.6×(1-0.6)=0.72.

18.(文)为加强中学生实践、创新能力和团队精神的培养,促进教育教学改革,郑州市教育局举办了全市中学生创新知识竞赛.某校举行选拔赛,共有200名学生参加,为了解成绩情况,从中选取50名学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成的频率分布表,解答下列问题:

分组 频数 频率 一 60.5~70.5 a 0.26 二 70.5~80.5 15 c 三 80.5~90.5 18 0.36 四 90.5~100.5 b d 合计 50 e (1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,199,试写出第二组第一位学生的编号;

(2)求出a、b、c、d、e的值(直接写出结果),并作出频率分布直方图;

(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人.

[解析] (1)004

(2)a,b,c,d,e的值分别为13,4,0.30,0.08,1.

频率分布直方图如下:

(3)由样本中成绩在80.5~90.5的频数为18,成绩在90.5~100.5的频数为4,可估计成绩在85.5~95.5的人数为11人,故获得二等奖的学生约为×11=44人.

(理)(2012·山西省高考联合模拟)为了了解某年级1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13s与18s之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3?8?19,且第二组的频数为8.

(1)将频率当作概率,求调查中随机抽取了多少个学生的百米成绩;

(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.

[解析] (1)设图中从左到右前3个组的频率分别为3x,8x,19x依题意,得3x+8x+19x+0.32×1+0.08×1=1,x=0.02,设调查中随机抽取了n个学生的百米成绩,则8×0.02=,n=50,调查中随机抽取了50个学生的百米成绩.

(2)百米成绩在第一组的学生数为3×0.02×1×50=3,记他们的成绩为a、b、c百米成绩在第五组的学生数有0.08×1×50=4,记他们的成绩为m、n、p、q,则从第一、五组中随机取出两个成绩,基本事件有{a,b}、{a,c}、{a,m}、{a,n}、{a,p}、{a,q}、{b,c}、{b,m}、{b,n}、{b,p}、{b,q}、{c,m}、{c,n}、{c,p}、{c,q}、{m,n}、{m,p}、{m,q}、{n,p}、{n,q}、{p,q},共21个

其中满足“成绩的差的绝对值大于1s”所包含的基本事件有{a,m}、{a,n}、{a,p}、{a,q}、{b,m}、{b,n}、{b,p}、{b,q}、{c,m}、{c,n}、{c,p}、{c,q},共12个,所以P==.

2015-2016高考数学一复习统计与统计案例专项练习及答案解析的全部内容就是这些,威廉希尔app 希望考生可以取得优异的成绩。

2016年高考第一轮复习备考专题已经新鲜出炉了,专题包含高考各科第一轮复习要点、复习方法、复习计划、复习试题,大家来一起看看吧~

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。