编辑:
2014-10-31
(-----------2分)
(-----------4分)
(-----------6分)
⑵因为 都是锐角,所以 , (-----------7分)
= (-----------9分)
(10分)
(-----------11分)
(-----------12分)
17.⑴应抽取大于40岁的观众人数为 (名)……4分(列式4分,计算1分)
⑵根据列联表中的数据,得
……10分(列式2分,计算2分,判断2分)
所以,有99%的把握认为收看文艺节目的观众与年龄有关……12分
18.解: (1).由题设知[15,25)这组人数为0.04×10×1000=400,…………1分
故a=0.75×400=300 ……………………………………2分
[45,55)这组人数为0.003×10×1000=30,故b= ………………3分
综上,a=300,b=0.1. …………………………………4分
(2).由[45,65]范围内的样本数据知,抽到追星族的概率为
~B(2, ) ……………………………………6分
故 的分布列是
ξ 0 1 2
p 0.81 0.18 0.01
……………………………………8分
的期望是 ……………………………………10分
的方差是 ………………………………12分
19. (1) 证明: 面 , 面
所以, ……………………1分
中, ,
同理: ,又 ,
……………………………………………………………3分
所以, 面 ………………………………………………………………4分
又 面
所以, ……………………………………………………………5分
(2)解法一 由(1)证可知 是所求二面角 的平面角…………6分
在 中, , ;
故, …………………………8分
即二面角 的大小的余弦值为 ……………………………9分
解法二:利用向量法
设平面 的法向量为 ,
由(1)得 ,
且
解得: ,即 ;…………………7分
又平面 的法向量为 ,
所以,二面角 的余弦值为 . …………………………9分
(3))解法一: , , ,
………………………………………10分
又 , , ,
……………………(11分)
设 点到平面 的距离为 ,则 ,
解得 ,即 点到平面 的距离为 . ……………(14分)
解法二:利用向量法
由(1) (2)知 ,平面 的法向量为
故, 点到平面 的距离为
20.解:解:(1).由 的离心率 得 ……………………2分
…………………………………3分
(2). 与 方程联立消 得
由 与 相切知 ,由 知 ………………………………5分
与 方程联立消 得 ……① ……………………6分
设点
交 于 二点, 、 是①的二根
,故 ……………………………8分
……10分
令 ,则
令 ,则 在 上恒成立
故 在 上单减 ……………………………………12分
故 即 , 时 取得最小值,则 取得最小值
此时 ………………………………………14分
21. 解:21解:⑴ ……1分,
依题意, 即 ……3分,
解得 ……5分。
⑵记 ,
则 ……6分,
当 时, ;当 时, ;当 时, ……8分,所以 ,等号当且仅当 时成立,即 ,等号当且仅当 时成立,曲线 和直线 只有一个公共点……9分。
⑶ 时, ,所以 恒成立当且仅当
……10分,
记 , , ……11分,
由 得 (舍去), ……12分
当 时, ;当 时, ……13分,
所以 在区间 上的最大值为 ,常数 的取值范围为 ……14分.
2015届高三数学10月月考试题就分享到这里了,更多相关信息请继续关注高考数学试题栏目!
标签:高考数学试题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。