编辑:
2016-04-20
例2:①过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线方程是。
②已知曲线y=■x3+■,则过点P(2,4)的切线方程是。
在①题中求在点M处的切线方程,点M即是切点,故点M处的导数即是切线的斜率,学生很容易做对,但②题求的是过点P的切线方程,点P就不一定是切点,很多同学仍照搬①题的解法,就会导致错解。②题正确解法如下:
设切点坐标为(x0,■x03+■)
对y=■x3+■求导得y'=x2,则切线的斜率k=x02,
所以切线方程为y-(■x03+■)=x02(x–x0)
因为切线过点P(2,4),将点P坐标代入切线方程得4-(■x03+■)=x02(2–x0),解得x0=-1,或x0=2
过点P(2,4)的切线方程是y=x+2,或y=4x–4
同学们知道一道高考填空题是4分,“一字之差,谬之千里”。反思解题过程,问题出在审题不清上。
因此通过对审题的反思,同学们一要注意题目的变化,挖掘题目之间的内在联系,把新的问题转化为简单、熟悉的问题;二要深抠概念,严谨思维,紧紧抓住关键词语,善于思维辨析,自觉进行数学三种语言的自如转化(文字语言、符号语言、图象语言)。
二、对解题思维过程的反思
很多同学把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法、基本思维规律的学习。复习时或急急忙忙把公式、定理推证看一遍,或干脆不看公式的推导就直接做题,试图通过大量地做题去总结出一些方法,规律。结果却是多数同学不但“悟”不出方法、规律,而且只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。其实数学定理、公式的发现、推证的过程本身就蕴含着数学的思维能力及重要的解题方法和规律。
例3:①动点M(x,y)满足5■=|3x+4y–1|,则动点M的轨迹为()
A.直线B.椭圆
C.双曲线D.抛物线
②动点M(x,y)满足■=|3x+4y–1|,则动点M的轨迹为()
A.直线B.椭圆
C.双曲线D.抛物线
③动点M(x,y)满足■=|xcos+ysin–1|,是常数,则动点M的轨迹为()
A.直线B.椭圆
C.双曲线D.抛物线
2015-2016高考数学二轮复习要留心解题反思就分享到这里了,希望能帮助大家做好高考第二轮基础知识的复习,请继续关注威廉希尔app !
相关推荐:
标签:上海高考数学
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。