编辑:sx_wangha
2012-03-23
【读者按】分析近五年的全国高考试题,有关三角函数的内容平均每年有25分,约占17%,试题的内容主要有两方面;其一是考查三角函数的性质和图象变换;尤其是三角函数的最大值、最小值和周期,题型多为选择题和填空题;其二是考查三角函数式的恒等变形,如利用有关公式求植,解决简单的综合问题,除了在填空题和选择题中出现外,解答题的中档题也经常出现这方面的内容,是高考命题的一个常考的基础性的题型。其命题热点是章节内部的三角函数求值问题,命题新趋势是跨章节的学科综合问题。因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。 基于以上分析,预测在2011年的高考试卷中,考查三角函数的题仍为一小题一大题。主要考查"三基"(基础知识、基本技能、基本思想和方法)以及综合能力,难度多为容易题和中档题。
数列高考数学命题趋势预测
近几年来高考数列试题一直稳定在1-2个小题和1道大题上,分值约为20分左右, 占总分值的12%左右,但是如果把数列与其他知识结合的综合题目,分值会更大。从2010年高考题可见数列题命题有如下趋势:
1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、 难三类皆有。
2.数列中an与Sn之间的互化关系也是高考 的一个热点。.
3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用。
4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等。
复习中应注意:
1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决。如通项公式、前n项和公式等。
2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算。
3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等。
4.等价转化是数学复习中常常运用的,数列也不例外 。如an与Sn的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳。
5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键。
6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果。
7.数列应用题将是命题的热点,这类题关键在于 建模及数列的一些相关知识的应用。
相关推荐:
更多内容进入:
标签:高考数学预测
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。