编辑:sx_mengxiang
2014-06-01
2013年全国高考数学文科试卷安徽卷(word版)
内容简介:
二.填空题:本大题共5小题,每小题5分,共25分。把答案填在答题卡的相应位置。
(11)函数y=ln(1+1/x)+的定义域为_____________。(12)若非负数变量x、y满足约束条件,则x+y的最大值为__________。
(13)若非零向量a,b满足|a|=3|b|=|a+2b|,则a与b夹角的余弦值为_______。
(14)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时。f(x)=x(1-x),
则当-1≤x≤0时,f(x)=________________。
(15)如图,正方体ABCD-A1B1C1D1的棱长为1,p为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的洁面记为S,则下列命题正确的是(写出所有正确命题的编号)。
①当0
②当CQ=1/2时,S为等腰梯形
③当CQ=3/4时,S与C1D1的交点R满足C1R=1/3
④当3/4
⑤当CQ=1时,S的面积为/2
(16)(本小题满分12分)
设函数f(x)=sinx+sin(x+π/3)。
(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(Ⅱ)不画图,说明函数y=f(x)的图像可由y=sinx的图象经过怎样的变化的到。
(17)(本小题满分12分)
为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中为各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:
甲乙
745
53325338
55433310060691122335
86622110070022233669
75442811558
2090
(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);
(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x1,x2,估计x1-x2的值。
(18)(本小题满分12分)
如图,四棱锥P-ABCD的地面ABCD是边长为2的菱形,∠BAD=600
。已知PB=PD=2,PA=.
(Ⅰ)证明:PC⊥BD
(Ⅱ)若E为PA的中点,求三菱锥P-BCE的体积。
(19)(本小题满分13分)
设数列|an|满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+a-n+2,cosx-ax-2sinx
满足fn(π/2)=0
(Ⅰ)求数列{ax}的通用公式;
(Ⅱ)若bx=2(an+1/2xn)求数列{bn}的前n项和Snx
20.设函数f(x)=cx-(1+a2)x2,其中a>0,区间I={X{f(x)da>0
(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β-α);
(Ⅱ)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值。(21)(本小题满分13分)
21.已知椭圆C:x²/a²+y²/b²=1(a>b>0)的焦距为4,且过点p(,)。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设Q(xa,ya)(xa,ya≠0)为椭圆C上一点,过点Q作x轴的垂线,垂足为E。取点A(Q,2),连接AE,过点A作AE的垂线交x轴于点D。点C是点D关于y轴的对称点,作直线QC,问这样作出的直线QC是否与椭圆C一定有唯一的公共点?并说明理由。
标签:安徽高考试题真题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。