编辑:
2017-05-04
目的:
1.通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣
2.把学生的注意力自然的引入研究方向,为课题的研究做铺垫
第二环节 概念形成
1.借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素.
2.教师再给出严格规范的定义,特别借助学具说明“在平面内” 的必要性.此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形.
目的:
1.对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想.
2.借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点.
第三环节 实验探究
(以四人小组为单位展开探究活动)
提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究.
活动一:利用四边形探索四边形内角和
要求:先独立思考再小组合作交流完成.)
(师巡视,了解学生探索进程并适当点拨.)
(生思考后交流,把不同的方案在纸上完成.)
……(组间交流,教师课件展示几种方法)
教师帮助学生反思:在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处?
进而引导学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为180°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。
活动二:探索五边形内角和
(要求:独立思考,自主完成.)
注:在探究过程中,有学生是把五边形分割成四边形和一个三角形来解决问题的.四边形内角和为360°加上三角形内角和180°,就求出五边形内角和为540°,教师在肯定其做法的同时,要指出这种方法的局限性,即“必须在知道比其少一条边的多边形内角和的基础上才能求出该多边形的内角和”.
标签:数学说课稿
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。