编辑:
2017-03-14
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?
2.选教材提出的问题,直接引入新课
Ⅱ.合作交流 解读探究
1.二次函数与一元二次方程之间的关系
探究:教材问题
师生同步完成.
观察:教材22页,学生小组交流.
归纳:先由学生完成,然后师生评价,最后教师归纳.
Ⅲ.应用迁移 巩固提高
1 .根据二次函数图像看一元二次方程的根
同期声
2 .抛物线与x轴的交点情况求待定系数的范围.
3 .根据一元二次方程根的情况来判断抛物线与x轴的交点情况
Ⅳ.总结反思 拓展升华
本节课学了如下内容:
1.经历了探索二次函数与一元:二次方程的关系的过程,体会了方程与函数之间的联系.
2.理解了二次函数与x轴交点的个数
与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根,两个相等的实根和没有实根.
3.数学方法:分类讨论和数形结合.
反思:在判断抛物线与x轴的交点情况时,和抛物线中的二次项系数的正负有无关系?
拓展:教案
Ⅴ.课后作业P231.3.5
26.1 二次函数的图象与性质(1)
[本课知识要点]
会用描点法画出二次函数 的图象,概括出图象的特点及函数的性质.
[MM及创新思维]
我们已经知道,一次函数 ,反比例函数 的图象分别是 、
,那么二次函数 的图象是什么呢?
标签:数学说课稿
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。