青岛版初二数学《解直角三角形》说课稿范文

编辑:sx_yanxf

2016-06-01

同学们现在正处于初二阶段,这是一个初中最为关键的时期。威廉希尔app 初中频道为大家准备了初二数学解直角三角形说课稿范文,欢迎阅读与选择!

一、内容分析:

本节课设计的总体思路就是通过一个基本模型,延伸到三种的变换形式,从而了解直角三角形的多种变化,并与其他知识相结合,把实际问题的数量关系转化为解直角三角形的数学问题,培养自主探索的能力,形成解决问题的基本策略与能力,发展应用知识。

“授学生以鱼不如授学生以渔”,通过知识技能的传授,使学生学会化繁为简,把复杂的题目剖析出简单的数学知识。通过多题归一,让学生感知数学建模的思想和过程,了解数形结合的思想方法,培养转化、化归的思想方法,进而获得广泛的数学活动的经验。我制定了如下目标:

知识与技能:能把实际问题的数量关系转化为解直角三角形的数学问题

过程与方法:通过基本模型,延伸变换形式,让学生感知数学建模的思想和过程

情感态度价值观:培养自主探索的能力,形成解决问题的基本策略与能力,发展应用知识,了解数形结合的思想方法,培养转化、化归、方程的思想方法。

教学重点、难点:

重点:能运用锐角三角函数解决与直角三角形有关的简单实际问题

难点:提高把实际问题转化为数学问题(解直角三角形)的能力.

二、学情分析:

本节课教学是中考的一轮复习,由于知识学完的时间不长,学生对于这些知识比较熟悉,有一定基础,因此本节课的主要任务是培养自主探索的能力,形成解决问题的基本策略与能力,培养转化、化归、方程的思想方法,并渗透解直角三角形中的“双直角”基本模型,培养学生运用“基本图形”的能力。

教法分析:

遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。

中考分析:

解直角三角形的内容是近几年中考的必考题,题型多样、常与四边形、圆以及一元二次方程等知识综合命题,题型多为简单的中档题,常在涉及实际测算的大题中出现,是中考的热点。

教学程序

(一)相关概念:

1.仰角、俯角的定义:如右图,从下往上看,视线与水平线的夹角叫做仰角,从上往下看,视线与水平线的夹角叫做俯角。右图中的∠1就是仰角,∠2就是俯角。

2.坡角、坡度的定义:坡面的铅垂高度与水平宽度的比叫做坡度 (或坡比),读作i,即i=,坡度通常用1:m的形式,例如上图的1:2的形式。坡面与水平面的夹角叫做坡角。从三角函数的概念可以知道,坡度与坡角的关系是i=tanB。显然,坡度越大,坡角越大,坡面就越陡。

3.方向角:指北或指南的方向线与目标方向线所成的小于900的角叫做方向角。

[设计意图]:由于解直角三角形的应用设计到的相关概念学生有所遗忘,直接抛给学生,让学生利用课前三分钟进行温习,从而节约时间,提高课堂效率。

(二)基本图形

如图,将两个三角形相等的直角边重合,构成“双直角基本模型”.

[设计意图]:回顾“双直角基本模型”,开门见山,直入主题,旨在说明本节课的出发点,着重点,从而开展教学。

引例:(2011?宿迁)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)

(基本图形的类比

例题1:(2010泰州)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时李强从南坡山脚B处出发。如图,已知小山北坡的坡度,山坡垂直高度为240米,南坡的坡角是45°。问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)

(基本图形的推广



例题2:(宁夏)如图,在等腰三角形中, ∠C=900,AC=6,D为AC上一点,若 tan∠DBA= ,则AD的长为( )

A.   B.2 C.1 D.

变:tan∠CBD= ,求tan∠DAB

[设计意图]:通过对基本图形中30度的角的正切值进行推广,培养学生对“基本图形”中部分条件“一般化”的能力。

(基本图形的弱化

例题:3: (十堰) 海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由



[设计意图]:引例、例2、例3的教学分别涉及到仰角、俯角,坡角、坡度,方向角的知识;提高学生对“基本概念”的理解和运用以及用方程解决问题的思想,另外例3的教学也给非直角三角形图形问题的解决铺平了道路,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过解直角三角形而获得解决 。

(三)相关练习:

1.(2010巢湖市)将一副三角板按如图①所示的位置摆放,使后两块三角板的直角边AC和MD重合,已知AB=AC=16cm,将△MED绕点A(m)逆时针旋转60°后得到图②,两个三角形重叠(阴影)部分的面积大约是

2.(2010深圳)如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行 分钟可使渔船到达离灯塔距离最近的位置.

3.(2011?南京)如图,某数学课外活动小组测量电视塔AB的高度.他们借助一个高度为30m的建筑物CD进行测量,在点C处测得塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h.

4.(2006?常德)如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度i=1:,斜坡BD的长是50米,在山坡的坡底B处测得铁架顶端A的仰角为45°,在山坡的坡顶D处测得铁架顶端A的仰角为60度.

(1)小山的高度为多少米;

(2)铁架的高度为多少米.



[设计意图]:练习1将基本图形与图形的变换(旋转)相结合;练习2是例3的变式训练;练习3、4是基本图形的变形以及与其它知识的综合。

(四)作业设计分层化

A组作业:《中考复习指南》P158-159第2、3、6题

B组作业:《中考复习指南》P158-159第2、6题

[设计意图]:通过作业的分层设计,让每一个学生多能有所收获。

(五)课堂小结

(1)对于非直角三角形图形问题,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过解直角三角形而获得解决 。

(2)学会把复杂的题目剖析出简单的数学知识 ,学会“读题”,提高自己的解题能力。

(3)重视“基本图形”的运用,做到“多题归一”。

(4)你还有哪些疑惑?

[设计意图]:为学生的解题提供思路和技巧,帮助学生有效运用数学中的“基本图形”这一重要的工具。

(六)板书设计

中考专题复习——《解直角三角形》

双直角的基本图形 例1 例2 例3 例4 练习

相信大家对于上文提供的初二数学解直角三角形说课稿范文相关内容一定仔细阅读了吧?祝大家学习进步。

相关推荐:

初二下册数学《二次根式的加减法》说课稿模板 

青岛版八年级数学《相似三角形》说课稿范文 

 

标签:数学说课稿

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。