编辑:
2016-10-20
教师在黑板上以草图的形式为学生演示,依照线段的和、差、倍、分的作法,从而发现作图中的问题,怎样做一个角等于已知角.由于这个基本作图没学,因此作图法暂时不能具体操作,所以目前切实可行的方法只有度量计算法.
(2)度量计算法.
依然选用例2,解法如下
解:量得∠AOB=50°,∠CED=20°,
∠AOB与∠CED的和是70°.
∠AOB与∠CED的差是30°.
∠CED的二倍是40°.
练习(1)如图1-29,∠AOB=130°,∠AOE=50°,∠OEA=60°,求∠BOE,∠OEB.
(2)如图1-30,量出∠BAC,∠ABD,∠BDC,∠ACD的度数,并求出四个角的和,∠BAC与∠ACD的和.
(3)如图1-31,已知∠A=∠B=25°,若∠A+∠B+∠BCA=180°,求∠ACE.
5、突破重、难点的策略和方法
类比教学法,学生在理解线段的比较的基础上很容易理解角的比较方法。
6、学生质疑问难
角平分线定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.
对这个定义的理解要注意以下几点:
1.角平分线是一条射线,不是一条直线,也不是一条线段.如图1-32,它是由角的顶点出发的一条射线,这一点也很好理解,因为角的两边都是射线.
2.当一个角有角平分线时,可以产生几个数学表达式.如图1-32,可写成
因为 OC是∠AOB的角平分线,
所以 ∠AOB=2∠AOC=2∠COB, (1)
∠AOC=∠COB, (2)
反过来,只要具备上述(1)、(2)、(3)、(4)中的式子之一,就能得到OC为∠AOB的角平分线.这一点学生要给以充分的注意.
7、练习设计
1.画一个三角形ABC,然后作出这三个角的平分线.观察它们是否交于一点,如果交于一点,则交点的位置在哪里?
2.如图1-33,若∠AOB=∠COB=∠DOC,进行下列填空.
(1)∠AOD=( )+( )+( );
(2)∠AOB=( )∠AOD;
(3)∠AOD=( )∠COB;
(4)∠DOB=( )=( )+( ).
8、课堂小结
教师提问:这节课我们都学习了哪些内容和主要的思维方法?
学生的回答可能不够全面,或者比较零散,教师最后给以归纳.
1.学习的内容有三个:(1)比较角的大小.(2)角的和、差、倍、分.(3)角平分线的概念.
2.学习了类比联想的思维方法.
9、板书设计
精品小编为大家提供的数学角的比较与补余角教学计划表就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。
相关推荐:
标签:数学教学计划
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。