编辑:
2016-05-10
教师再提问:如果改变∠AOC的大小, 会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念.
(1)师生共同定义邻补角、对顶角.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
(2)初步应用.
练习1:下列说法,你同意吗?如果错误,如何订正.
①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.
②邻补角可看成是平角被过它顶点的一条射线分成的两个角.
③邻补角是互补的两个角,互补的两个角也是邻补角?
5.对顶角性质.
(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.
(2)教师把说理过程,规范地板书:
在图1中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC 与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.
教师板书对顶角性质:对顶角相等.
强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.
四、巩固运用
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程.
2.练习:
(1)课本P5练习.
(2)补充:判断下列图中是否存在对顶角.
五、作业
教科书 习题5.1 第1、2题.
现在是不是感觉威廉希尔app 初中频道为大家准备的七年级数学教学计划很关键呢?欢迎大家阅读与选择!
相关推荐:
标签:数学教学计划
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。