编辑:sx_yanxf
2016-05-20
随着时间的流逝,下学期时间已过去了一大半,大家是否对已经学过的的东西进行反思和总结呢?下文由威廉希尔app 为大家带来了沪教版七年级数学教学反思怎么写,希望能帮助大家。
本章学习的一元一次不等式的解法及其应用,是中学数学的重要内容,和一元一次方程相似,对培养学生分析问题,解决问题的能力,体会数学的价值都有较大的作用。我们认为这一章的主干是解一元一次不等式及一元一次不等式组,所以在讲课的时候就绕开不等式及不等式的解等定义,直奔主题。
本章通过对一个实际问题的数量关系的分析,引入不等式的概念,让学生初步了解解不等式及其解的意义。这样的引入能结合生活实际,虽好,但对一个实际问题转化为一个数学问题进行分析,要求学生要有比较好的理解能力,因此,我们老师认为不适合我校学生的实际。直接由文字表述的数量关系列出不等式引入。
第一节课是一元一次不等式的解法,由于一元一次不等式的解法与一元一次方程的解法十分相似,解一元一次方程的依据是等式的性质,而解一元一次不等式的依据是不等式的性质,所以讲授新课之前老师先口头复习了等式的性质,然后通过对两个不等式“7>5”、“―7<―5”左右两边同时加上、减去、乘以、除以某一个相同有数,让学生自己归纳出不等式的性质,同时和前面刚复习的等式的性质比较,对比掌握。类比一元一次方程的解法学习一元一次不等式的解法,让学生非常清楚地看到不等式的解法与方程的解法只是最后系数化为1不同,其它的步骤是相同的,强调最后一步“负变,正不变”。学生掌握得很好。并在这一节重视用数轴表示不等式的解集。
第二节课是一元一次不等式组的解法。通过求 >2且 <3的取值范围,引出不等式组的解法。由于第一节学生对一元一次不等式的解法掌握得较好,所以学生能顺利地求出不等式组的两个不等式的解集,也能在数轴上准确地表示出来,明白它们的公共部分是哪一段,但就是不会用不等式表示出来,例如 >2且 >4他们会写成 >2>4; >2且 <4他们会写成2> <4等等,对于这部分的表示方法要加强练习。
第三节课是不等式这一章所有概念的学习,先让学生看课本,找出学习卷上要求的概念,并填在学习卷上相应的位置,老师只是对易混淆的概念强调一下。然后仍是不等式及不等式组解法的练习。
存在不足:通过这几节课的学习,我们发现学生对不等式及不等式组的解法掌握得较好,但对不等式的特殊解不是很理解,例如求 <16的正整数解,学生能解出它的解集为 <4,但不明白什么是正整数解,有些学生会写成 <1, <2, <3。也就是说学生不能理解不等式的解及不等式的解集之间的区别与联系,这可能就是淡化概念带来的负面影响吧。还有在列不等式的时候很多学生不懂如何用不等式表示“负数”、“正数”、“非正数”、“非负数”,“不大于”、“不小于”。对一元一次不等式的应用这部分内容,我们感觉学生掌握得最薄弱,这也是让我们老师比较困惑的问题。正在努力寻找行之有效的措施。 提出建议:对将表示不等式的语句转化成不等式要强化训练,如“至多“、“至少”、“不超过”,“剩余”、“不够”等等,为后面的应用题作准备,我们知道在列一元一次方程或方程组解应用题,学生学握起来非常困难,主要是等量关系难找。而在不等式的应用题中,不等关系将更难找,很多表示不等关系的语句隐藏得较深,所以我们要提前作好这方面的准备。
上文提供的沪教版七年级数学教学反思怎么写,是不是给了你很大的警惕呢?祝大家学习进步。
相关推荐:
标签:教学反思
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。