编辑:sx_yanxf
2016-05-10
威廉希尔app 初中频道给大家分享的是八年级下学期数学教学反思案例,请同学们认真浏览。希望助考生一臂之力。一起加油吧!
在初二·一班上完《相似多边形》之后,淡淡的喜悦伴随着淡淡的遗憾萦绕心间,下午看了自己的课堂实录,将自己的在以下几个方面的感受整理如下:
一、反思学案设计
本节课在学案设计的过程中结合了教材提供的内容和我班学生的实际水平,对教材提供的内容进行了整合,更符合我班学生的水平。有以下几点比较满意;
1、问题情景的设计。先给学生利用课件展示一组图片,让生通过观察找出形状相同的图片。本题形象直观,学生都能通过观察得出结论。趁势教师出示如下题目:
一块黑板,长3米,宽1.5米,加一7.5厘米的边框,边框外围与边框里边的矩形形状相同吗?
学生往往会不假思索地认为相同。教师告诉学生其实不相同,本节课的内容就是告诉你为什么不相同,顺势导入课题。
2、操作题的设计。本节课教材提供的引例,我把它改成操作题放在了学完相似多边形定义之后,用来巩固相似多边形的判定。此题为开放式操作题,学生自选工具,自己设计操作方法,组内成员自己分工,合作探讨两个六边形是否相似,结论不唯一。
3、思想教育见缝插针。在学完本节课所有知识之后,我让学生利用本节课所学知识在对问题情境中的黑板问题做出判断,并结合此题进行思想教育:在生活中经常需要我们做出判断,我们在做出判断时不能太相信直观,有用事实说话,用数据说话。凡事三思后行。
二、反思课堂生成
看完录像后,我比较满意的一点是我的学生融进了我的课堂中,合作探讨交流落到实处,而不是一种形式,突出表现为本节课有两个课堂生成的学习片段很精彩,我个人的处理也比较到位。
教师生成的课堂资料
课本上安排了一个例题:探讨任意两个正三角形、正四边形的角、边的关系。学生经过自主探讨后很轻松的得出了结论:他们的对应角相等,对应边成比例。学生处理这个问题比较轻松,出乎我的预料之外。于是我临时追加了一个问题:所有的正多边形都具备这个特点吗?同学们围绕这个问题在小组内合作探讨,众人拾柴火焰高,竟然解决的很好。
学生生成的学习片段
在处理操作题是出现了两种不同的结论;
孙卓一组的结论:两个六边形对应角相等,对应边的比值相等,因此相似。
王敏一组:对应角相等,对应边不成比例,她对自己组内得出的结论显然不太自信,不敢说。我一再鼓励他实事求是的说出自己小组内得出的结论。最后终于说出:两个六边形不相似。我首先让同学为他们实事求是大胆发言的精神鼓掌,然后引导学生:同一个问题为什么出现两种结果?到底谁的结论正确?最后引导学生说出两种结果都对,因为在测量时存在误差。这个片段非常精彩,是本节可我最满意的一个教学片断。
三、反思遗憾
任何一节课都不是完美无缺的,一节课没有最好只有更好。正因为课堂教学存在遗憾,自己的业务才有提升的空间。
遗憾一:
学生展示自己的热情不够,表现拘谨,放不开。针对这一点,我在课后专门与学生进了沟通,学生反映听课教师多,害怕出错,还担心自己错了让我难堪。学生的回答让我非常感动,我的学生非常善良,能够站在我的立场上思考问题。我耐心的告诉他们,他们才是课堂的唯一主角,无论什么时候,也不管有没有人听课,老师都以自己的学生大胆展示、勇敢表现为荣。我们相约:我在数学课上尽量给他们表现的机会,而他们也要抓住机会大胆展示。
遗憾二:
本节课在操作题上 ,花的时间比预计的多,因此导致拖堂。
四、反思疑惑
操作题、开放式问题引入课堂,学生在探讨的过程中往往会生成一些教学片段,因此时间不好把握,导致拖堂或完不成教学任务,到底如何看待这种现象?我在课堂上(或其他教师的课上)常常碰到因为探究而不能完成预设教学内容的情况,感到预设与生成之间的矛盾不知如何解决,盼各位老师给予指导。
小编为大家精心推荐的八年级下学期数学教学反思案例还满意吗?相信大家都会仔细阅读,加油哦!
相关推荐:
标签:教学反思
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。