沪教版数学七年级下学期第10章教案模板(第2课时)

编辑:sx_yanxf

2016-04-26

教案是教师对新一课时讲授的整体设计,这样能够有效提高教学效率,因此威廉希尔app 为大家提供了沪教版数学七年级下学期第10章教案模板,希望对老师有所帮助。

一、教学目标

1.了解推理、证明的格式,理解判定定理的证法.

2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.

3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.

4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.

二、学法引导

1.教师教法:启发式引导发现法.

2.学生学法:积极参与、主动发现、发展思维.

三、重点·难点及解决办法

(一)重点

判定定理的推导和例题的解答.

(二)难点

使用符号语言进行推理.

(三)解决办法

1.通过教师正确引导,学生积极思维,发现定理,解决重点.

2.通过教师指导,学生自行完成推理过程,解决难点及疑点.

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片.

六、师生互动活动设计

1.通过设计练习,复习基础,创造情境,引入新课.

2.通过教师指导,学生探索新知,练习巩固,完成新授.

3.通过学生自己总结完成小结.

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.

(三)教学过程

创设情境,复习引入

师:上节课我们学习了公理和一种判定方法,根据所学看下面的问题(出示投影). 1.如图1所示,直线 、 被直线 所截,如果 ,那么 ,为什么?

2.如图2,如果 ,那么 ,为什么?

图1 图2

3.如图3,直线 、 被直线 所截.(1)如果 ,那么 ,为什么?

(2)如果 ,那么 ,为什么?

4.如图4,一个弯形管道 的拐角 , ,这时管道 、 平行吗?

图3 图4

学生活动:学生口答第1、2题.

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.

教师将第3题图形画在黑板上.

学生活动:学生口答理由,同角的补角相等.

师:要求学生写出符号推理过程,并板书.

[板书]∵ (已知),

(邻补角定义),

∴ (同角的补角相等).

(以备后面推导判定定理使用.)

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角.

师:它们有什么关系.

学生活动:互补.

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.

[板书]2.5 (2)

师:请同学们看复习提问中的第3题,我们知道了 与 互补,那么 ,由此你还可以推出什么?根据什么?

学生活动:学生思考、回答,还可以推出 ,这个推理的全过程就是:

∵ (已知), (邻补角定义),

∴ (同角的补角相等).

∴ (同位角相等,两直线平行.)(教师再加上这一步即可).

由此你能得到什么结论?

学生活动:学生思索后回答出,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(学生语言不规范,注意纠正).

师:也就是说,我们又得到了一种方法,我们把它简单说成:

[板书]同旁内角互补,两直线平行.

【教法说明】由于复习引入第3题为定理的推导做好了铺垫,所以学生并不难接受推理过程,放手由学生总结出判定方法,注意培养学生的归纳总结能力,另外在叙述判定方法时,训练学生用准确、规范的几何语言.

师:请同学们思考,刚才我们由同旁内角互补,推导两条直线平行,除了上面的推理过程,有没有其他途径?怎样写推理格式?

学生活动:学生思考,对照复习提问第3题的第2问很快地找到另一种途径,并在练习本上写出推理格式,找一个学生在原来黑板上的板书基础上完成.

【教法说明】通过使用不同种方法的推理,不仅开拓学生思维,同时也能够让学生尽可能地使用推理,从而使学生掌握推理格式的书写.

尝试反过,巩固练习

师:有了这种判定方法,我们就可以由同旁内角互补,直接判定两条直线平行了,让我们回到复习提问的第4题,管道 、 平行吗?为什么?

学生活动:平行,因为同旁内角互补,两直线平行.

【教法说明】不仅解决了前面遗留的问题,同时巩固了所学新知识.

师:下面我们一起应用这种判定方法再来研究一些题目(出示投影).

练习:

1.如图1,量得,,可以判定,它的根据是什么?

通过对沪教版数学七年级下学期第10章教案模板的学习,希望对老师有所帮助,提供更多的教学参考内容。

相关推荐:

精编初一数学第五章第1节教案设计 

精编初一数学第四章《多项式乘法》教案设计 

标签:数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。