编辑:sx_chenj
2013-11-28
聪明出于勤奋,天才在于积累。我们要振作精神,下苦功学习。小编准备了数学教案绝对值,希望能帮助到大家。
教学目标
1,掌握绝对值的概念,有理数大小比较法则. 2,学会绝对值的计算,会比较两个或多个有理数的大小. 3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点 两个负数大小的比较
知识重点 绝对值的概念
设置情境 引入课题
星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升? 学生思考后,
教师作如下说明: 实际生活中有些问题只关注量的具体值,而与相反 意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关; 观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离. 学生回答后,教师说明如下: 数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关; 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a| 例如,上面的问题中|20|=20,|-10|=10显然,|0|=0
这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.使学生体验数学知识与生活实际的联系. 因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.
探究规律
例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?、 -3,5,0,+58,0.6 要求小组讨论,
合作学习. 教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页). 巩固练习:教科书第15页练习. 其中第1题按法则直接写出答案,求一个数的绝时值是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 的法则,可看做是绝对值概念的一个应用,所以安排此例. 学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.
结合实际发现新知
引导学生看教科书第16页的图,并回答相关问题: 把14个气温从低到高排列; 把这14个数用数轴上的点表示出来; 观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗? 应怎样比较两个数的大小呢? 学生交流后,教师总结: 14个数从左到右的顺序就是温度从低到高的顺序: 在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数. 在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则 想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系. 要求学生在头脑中有清晰的图形
让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。 数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。
课堂小结
怎样求一个数的绝对值,怎样比较有理数的大小?
本课作业
1, 必做题:教产书第19页习题1,2,第4,5,6,10 2, 选做题:教师自行安排
上面就是为大家准备的数学教案绝对值,希望教师认真浏览,希望在教学能有所改善。
相关推荐
标签:数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。