编辑:sx_zhanglz
2015-09-22
计划可以使人集中注意,如果要让学生感兴趣,教师就要饱含情感。威廉希尔app 编辑了初三数学上册第二单元教案,欢迎阅读!
教学目标
(一)教学知识点
1.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质.
2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同.
(二)能力训练要求
1.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.
2.由函数y=x2的图象及性质,对比地学习y=-x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.
(三)情感与价值观要求
1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.
2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.
教学重点
1.能够利用描点法作出函数y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.
2.能够作出二次函数y=-x2的图象,并能比较它与y=x2的图象的异同.
教学难点
经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y=-x2的图象与性质方面,实现"探索--经验--运用"的思维过程.
教学方法
探索--总结--运用法.
教具准备
投影片四张
第一张:(记作§2.2 A)
第二张:(记作§2.2 B)
第三张:(记作§2.2 C)
第四张:(记作§2.2 D)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是过原点的一条直线,一般的一次函数的图象是不过原点的一条直线,反比例函数的图象是两条双曲线.上节课我们学习了二次函数的一般形式为y=ax2+bx+c(其中a,b,c是常数且a≠0),那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.
Ⅱ.新课讲解
一、作函数y=x2的图象.
[师]一次函数的图象是一条直线,二次函数的图象是什么形状呢?让我们先看最简单的二次函数y=x2.
大家还记得画函数图象的一般步骤吗?
[生]记得,是列表,描点,连线.
[师]非常正确,下面就请大家按上面的步骤作出y=x2的图象.
(2)在直角坐标系中描点.
(3)用光滑的,曲线连接各点,便得到函数y=x2的图象.
[师]画的非常漂亮.
二、议一议
投影片:(§2.2 A)
对于二次函数y=x2的图象,
(1)你能描述图象的形状吗?与同伴进行交流.
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
(3)当x<0时,随着x值的增大,y的值如何变化?当x>0时呢?
(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?
(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴进行交流.
欢迎大家去阅读由小编为大家提供的初三数学上册第二单元教案,大家好好去品味了吗?希望能够帮助到大家,加油哦!
相关推荐:
标签:数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。