九年级数学教案:随机事件(第二课时)

编辑:sx_bilj

2014-03-24

九年级数学教案:随机事件(第二课时)

知识技能:通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。

过程和方法:历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。

情感态度和价值观:在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;得出随机事件发生的可能性大小的准确结论。需经过大量重复的试验,让学生从中体验到科学的探究态度。

教学重点:对随机事件发生的可能性大小的定性分析

教学难点:理解大量重复试验的必要性。

一、创设情境,引入课题

1、摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。

2、提出问题:我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B,提问:

(1)事件A和事件B是随机事件吗?

(2)哪个事件发生的可能性大?

【设计意图:“摸球”试验操作方便、简单且可重复,又为学生所熟知,学生做起来感觉亲切,有趣,并且容易依据生活经验猜到正确结论,这样易于激发学生的学习热情。】

二、分组试验、收集数据,验证结果

1、把学生分成2人一组,其中一人把球搅均匀,另一人摸球并把结果记录在表1中。

事件A发生的次数事件B发生的次数结果(指哪个事件发生的次数多)

10次摸球

20次摸球

【设计意图:设计“10次摸球”和“20次摸球”,意在引起结果的变化。】

2、小组汇报试验结果,教师统计结果填于表2。

得到结果1的组数得到结果2的组数

10次摸球

20次摸球

注:结果1指事件A发生的次数多,结果2指事件B发生的次数多。

26.1 二次函数(1)

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

AB长x(m)123456789

BC长(m)12

面积y(m2)48

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 

对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 

二、提出问题

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?

在这个问题中,可提出如下问题供学生思考并回答:

1.商品的利润与售价、进价以及销售量之间有什么关系?

[利润=(售价-进价)×销售量]

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

[x的值不能任意取,其范围是0≤x≤2]

26.1 二次函数(2)

教学目标:

1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。

2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯

重点难点:

重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。

教学过程:

一、提出问题

1,同学们可以回想一下,一次函数的性质是如何研究的?

(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)

2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?

(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)

3.一次函数的图象是什么?二次函数的图象是什么?

二、范例

例1、画二次函数y=ax2的图象。

解:(1)列表:在x的取值范围内列出函数对应值表:

x…-3-2-10123…

y…9410149…

(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点

(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。

提问:观察这个函数的图象,它有什么特点?

让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。

抛物线概念:像这样的曲线通常叫做抛物线。

顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.

相关推荐:

九年级数学圆周角教案 

数学教案圆的内接四边形  

标签:数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。