编辑:sx_chenj
2013-12-04
聪明出于勤奋,天才在于积累。我们要振作精神,下苦功学习。小编准备了数学教案圆的内接四边形,希望能帮助到大家。
1. 知识结构
2. 重点、难点分析
重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法.
难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的
外角和它的内对角的相互对应位置.
3. 教法建议
本节内容需要一个课时.
(1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究;
(2)在教学中以“发现——证明——应用”为主线,以“特殊——一般”的探究方法,引导学生发现与证明的思想方法.
一、教学目标 :
(一)知识目标
(1)了解圆内接多边形和多边形外接圆的概念;
(2)掌握圆内接四边形的概念及其性质定理;
(3)熟练运用圆内接四边形的性质进行计算和证明.
(二)能力目标
(1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力;
(2)通过定理的证明探讨过程,促进学生的发散思维;
(3)通过定理的应用,进一步提高学生的应用能力和思维能力.
(三)情感目标
(1)充分发挥学生的主体作用,激发学生的探究的热情;
(2)渗透教学内容中普遍存在的相互联系、相互转化的观点.
二、教学重点和难点:
重点:圆内接四边形的性质定理.
难点:定理的灵活运用.
三、教学过程 设计
(一)基本概念
如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆.
(二)创设研究情境
问题:一般的圆内接四边形具有什么性质?
研究:圆的特殊内接四边形(矩形、正方形、等腰梯形)
教师组织、引导学生研究.
1、边的性质:
(1)矩形:对边相等,对边平行.
(2)正方形:对边相等,对边平行,邻边相等.
(3)等腰梯形:两腰相等,有一组对边平行.
归纳:圆内接四边形的边之间看不出存在什么公同的性质.
2、角的关系
猜想:圆内接四边形的对角互补.
(三)证明猜想
教师引导学生证明.(参看思路)
思路1:在矩形中,外接圆心即为它的对角线的中点,∠A与∠B均为平角∠BOD的一半,在一般的圆内接四边形中,只要把圆心O与一组对顶点B、D分别相连,能得到什么结果呢?
∠A=,∠C=
∴∠A+∠C=
思路2:在正方形中,外接圆心即为它的对角线的交点.把圆心与各顶点相连,与各边所成的角均方45°的角.在一般的圆内接四边形中,把圆心与各顶点相连,能得到什么结果呢?
这时有2(α+β+γ+δ)=360°
所以 α+β+γ+δ=180°
而 β+γ=∠A,α+δ=∠C,
∴∠A+∠C=180°,可得,圆内接四边形的对角互补.
(四)性质及应用
定理:的对角互补,并且任意一个外角等于它的内对角.
(对A层学生应知,逆定理成立, 4点共圆)
例 已知:如图,⊙O1与⊙O2相交于A、B两点,经过A的直线与⊙O1交于点C,与⊙O2交于点D.过B的直线与⊙O1交于点E,与⊙O2交于点F.
求证:CE∥DF.
(分析与证明学生自主完成)
说明:①连结AB这是一种常见的引辅助线的方法.对于这道例题,连结AB以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决.
②教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的训练,培养学生发散思维,勇于创新.
巩固练习:教材P98中1、2.
(五)小结
知识:圆内接多边形——圆内接四边形——圆内接四边形的性质.
思想方法:①“特殊——一般”研究问题的方法;②构造圆内接四边形;③一题多解,一题多变.
(六)作业 :教材P101中15、16、17题;教材P102中B组5题.
希望各位教师能够认真阅读数学教案圆的内接四边形,努力提高自己的教学水平。
相关推荐
标签:数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。