初二上册数学一次函数教案设计

编辑:

2014-09-07

练习:

1.下列函数中哪些是一次函数,哪些又是正比例函数?

(1)y=-8x. (2)y= .

(3)y=5x2+6. (3)y=-0.5x-1.

2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米.

(1)一个小球速度v随时间t变化的函数关系.它是一次函数吗?

(2)求第2.5秒时小球的速度.

3.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围.y是x的一次函数吗?

解答:

1.(1)(4)是一次函数;(1)又是正比例函数.

2.(1)v=2t,它是一次函数.

(2)当t=2.5时,v=2×2.5=5

所以第2.5秒时小球速度为5米/秒.

3.函数解析式:y=50-5x

自变量取值范围:0≤x≤10

y是x的一次函数.

[活动一]

活动内容设计:

画出函数y=-6x与y=-6x+5的图象.并比较两个函数图象,探究它们的联系及解释原因.

活动设计意图:

通过活动,加深对一次函数与正比例函数关系的理解,认清一次函数图象特征与解析式联系规律.

教师活动:

引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.

学生活动:

引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.

比较上面两个函数的图象的相同点与不同点。

结果:这两个函数的图象形状都是______,并且倾斜程度_______.函数 y=-6x的图象经过原点,函数 y=-6x+5

的图象与 y轴交于点_______,即它可以看作由直线y=-6x 向_平移__个单位长度而得到.比较两个函数解析式,试解释这是为什么.

猜想:一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系?

结论:一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线

y=kx平移b绝对值个单位长度而得到(当b>0时,向上平移;当b< 0时,向下平移)。

画出函数y=2x-1与y=-0.5x+1的图象.

过(0,-1)点与(1,1)点画出直线y=2x-1.

过(0,1)点与(1,0.5)点画出直线y=-0.5x+1.

[活动二]

活动内容设计:

画出函数y=x+1、y=-x+1、y=2x+1、y=-2x+1的图象.由它们联想:一次函数解析式y=kx+b(k、b是常数,k≠0)中,k的正负对函数图象有什么影响?

活动设计意图:

通过活动,熟悉一次函数图象画法.经历观察发现图象的规律,并根据它归纳总结出关于数值大小的性质.体会数形结合的探究方法在数学中的重要性,进而认识理解一次函数图象特征与解析式联系.

目的:

引导学生从函数图象特征入手,寻求变量数值变化规律与解析式中k值的联系.

标签:数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。