数学教案反比例函数简介

编辑:

2013-12-03

三、几个值得关注的问题

(一)注意做好与已学内容的衔接

教科书在“第11章 一次函数”已经给出了函数的一般概念以及自变量、函数值等概念.,学生对函数已经形成了初步的认识。反比例函数的教学,一方面要以前面所学的函数概念及相关知识为基础,另一方面可以反过来进一步深化对函数内涵的理解和掌握。

从学生第一次接触函数所蕴涵的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。因此,学习好本章的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。例如,在引进反比例函数概念时,要适时复习第11章中的函数、自变量、函数值、正比例函数、一次函数等定义或概念,为反比例函数的学习做好铺垫。这样,学生就能够比较顺利地接受和掌握反比例函数的概念和性质。

(二)加强反比例函数与正比例函数的对比

在复习“第11章 一次函数”内容的基础上,引进本章内容。应该有意识地加强反比例函数 (k为常数,)与正比例函数(k为常数,)之间的对比,对比可以从如下几方面进行:

1.两种函数的解析式有何相同与不同?两种函数的图象的特征有何区别?

2.在常数 相同的情况下,当自变量 变化时两种函数的函数值 的变化趋势有什么区别?

3.两种函数中 的取值范围有何不同?常数 的符号改变对两种函数图象所处象限的影响如何?

回答是这样的:

1.两种函数的解析式的相同点是,自变量只有一个,即x,都有一个常数k,且;不同点是自变量 在解析式中的位置不同,正比例函数的解析式 的右边是一个整式,不为0的常数k是自变量x的系数,而反比例函数的解析式的右边是一个分式,自变量x处在分母的位置,不为0的常数k处在分子的位置。

两种函数的图象都分布在两个象限内,这是相同之处;不同点在于正比例函数的图象是一条直线,而反比例函数的图象是两支曲线。正比例函数的图象经过原点,而反比例函数的图象不经过原点。

2.在常数相同的情况下,当自变量x增大(减小)时,正比例函数的y值增大(减小),而反比例函数的y值减小(增大);在常数相同的情况下,当自变量x增大(减小)时,正比例函数的y减小(增大),而反比例函数的 t值增大(减小)。

3.当常数 的符号改变时,两类函数图象所处的象限都会随之改变。当时,两类函数的图象都分布在一、三象限;当时,两类函数的图象都分布在二、四象限。

对于这些问题,不要急于给出答案,应该注意鼓励学生积极探究,在这样的氛围中,学生的数学思维和兴趣会被激发起来,对所学内容的掌握也就更牢固。

(三)把突出函数中蕴涵的重要数学思想作为本章的主要线索

无论从一次函数到反比例函数,再到以后的二次函数,甚至高中的其他各类函数,都是函数的某种具体形式,都是为近一步深刻领会函数的内涵提供了一个平台。随着学习的函数类型的增多,学生对函数内涵的理解也会逐步提高。可以说对函数内涵的理解是一个渐进的过程,需要较长的时间。

标签:数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。