编辑:
2013-12-03
函数概念来源于客观实际需要,也来自数学内部发展的需要。它是以变化与对应的思想为基础的数学概念。怎样认识函数概念呢?学习函数概念不能只注重背记定义而不关注它的实质,要使学生理解定义的真正含义,即函数概念的实质就是运动变化与联系对应。使学生了解对于许多客观事物必须从运动变化的角度研究,许多问题中的各种变量是相互联系的,变量之间存在对应规律。变量的值之间存在对应关系,其中就有单值对应关系,刻画这种关系的数学模型就是函数。本章所讨论的是最简单、最基本的函数,但是函数不分简单还是复杂,在本质上都是上面所说的那样的数学模型。作为关于函数的初始教学,应有意识地体现函数的本质,这正是本章内容中蕴涵的基本思想。当然,对于运动变化与联系对应的思想的认识也是需要逐步理解的,所以教学中应注意在不同阶段对这一思想的渗透介绍要有不同的做法和要求,要逐步深化,要从具体到抽象,从特殊到一般地引导学生认识它。
本套教科书在本章中首次正式出现函数概念,通过本章教学,学生应对函数形成初步的正确认识,即认识到虽然函数的表示方法有多种,因问题不同函数的具体形式可以形形色色,但是各种函数都是反映变化规律的数学工具,现在学习的函数都是刻画同一个变化过程中两个变量之间的对应关系的模型,对于同一类问题可以用同一类函数进行研究(例如用一次函数研究线性规划问题)。
(二)借助实际问题情景,由具体到抽象地认识函数;通过函数应用举例,体现数学建模思想
现实中存在大量问题涉及具有简单函数关系的变量,其中许多问题中的数量关系是一次(也称线性)的,这为学习本章内容提供了大量的现实素材。在本章教科书中,实际问题情境多次出现,其作用主要体现在以下方面:
1.引入或解释函数等概念,例如通过候鸟飞行问题引入正比例函数,通过登山问题引入一次函数,通过第11.1节中一系列具体例子解释变量间的对应关系等,这样做的目的是借助直观的、具体的事物为理解抽象的内容服务。
2.作为函数的应用举例,例如第11.1节中例4的水位预测,第11.2节中例6的运输规划等,它们都可以体现数学建摸思想,反映函数的广泛应用性。
本章明确提出“为了更深刻地认识千变万化的世界,人们经归纳总结得出一个重要的数学工具──函数,用它描述变化中的数量关系。函数的应用极其广泛。”在本章的教学和学习中,要充分注意有关现实背景,通过它们反映出函数来自实际又服务于实际,加强对函数是解决现实问题的一种重要数学模型的认识。
找出问题中相关变量之间的关系,并以数学形式表现这种关系,是本章中用数学模型表示和解决实际问题的关键步骤,而正确地理解问题情境是基础。在本章的教学和学习中,可以从多种角度思考,借助图象、表格、式子等进行分析,寻找变量之间的关系,检验所建立的函数的合理性。教师还可以结合实际情况选择更贴近学生生活的各种问题,引导学生用函数分析解决它们。
(三)重视数形结合的研究方法
本章所讨论的对象是函数,函数的表示法之一是图象法,即通过坐标系中的曲线上点的坐标反映变量之间的对应关系。这种表示方法的产生,将数量关系直观化、形象化,提供了数形结合地研究问题的重要方法,这在数学发展中具有重要地位。恩格斯说:“笛卡儿变数的出现,是数学中的一个转折点,从此运动和辩证法进入了数学。”
标签:数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。