编辑:
2013-12-03
二、本章编写特点 (一)让学生体验勾股定理的探索和运用过程 勾股定理的发现从传说故事讲起,从故事中可以发现等腰直角三角形有这样的性质:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。再看一些其他直角三角形,发现也有上述性质。因而猜想所有直角三角形都有这个性质,即如果直角三角形的两直角边长分别为,斜边长为,那么 (教科书把这个猜想记作命题1,把下节“如果三角形的三边长满足,那么这个三角形是直角三角形”记作命题2,便于引出互逆命题)。 教科书让学生用勾股定理探究三个问题。探究1是木板进门问题。按照已知数据,木板横着、竖着都不能进门,只能斜着试试。由此想到求长方形门框的对角线的长,而这个问题可以用勾股定理解决。探究2是梯子滑动问题:梯子顶端滑动一段距离,梯子的底端是否也滑动相同的距离。这个问题可以转化为已知斜边与一条直角边的长求另一条直角边的长的问题,这也可以用勾股定理解决。 探究3是在数轴上画出表示的点。分以下四步引导学生: (1)将在数轴上画出表示的点的问题转化为画出长为的线段的问题。 (2)由长为的线段是直角边都为1的直角三角形的斜边,联想到长为的线段能否是直角边为正整数的直角三角形的斜边。 (3)通过尝试发现,长为的线段是直角边为2,3的直角三角形的斜边。 (4)画出长为的线段,从而在数轴上画出表示的点。 (二)结合具体例子介绍抽象概念 在本章中,结合勾股定理、勾股定理的逆定理介绍了定理、逆命题、逆定理的内容。 在勾股定理一节中,先让学生通过观察得出命题1,然后通过面积变形证明命题1。由此说明,经过证明被确认正确的命题叫做定理。 在勾股定理的逆定理一节中,从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方),可以发现画出的三角形是直角三角形。因而猜想如果三角形的三边长满足,那么这个三角形是直角三角形,即教科书中的命题2。把命题2的条件、结论与上节命题1的条件、结论作比较,引出逆命题的概念。接着探究证明命题2的思路。用三角形全等证明命题2后,顺势引出逆定理的概念。 命题1,命题2属于原命题成立,逆命题也成立的情况。为了防止学生由此误以为原命题成立,逆命题一定成立,教科书特别举例说明有的原命题成立,逆命题不成立。 (三)注重介绍数学文化 我国古代的学者们对勾股定理的研究有许多重要成就,不仅在很久以前独立地发现了勾股定理,而且使用了许多巧妙的方法证明了它,尤其在勾股定理的应用方面,对其他国家的影响很大,这些都是我国人民对人类的重要贡献。 本章介绍了我国古代的有关研究成果。在引言中介绍我国古算书《周髀算经》的记载“如果勾是三、股是四、那么弦是五”。有很多方法可以证明勾股定理。教科书为了弘扬我国古代数学成就,介绍了我国古人赵爽的证法。首先介绍赵爽弦图,然后介绍赵爽利用弦图证明命题1的基本思路。“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲。正因为此,这个图案被选为2002年在北京召开的世界数学家大会的会徽。还在习题中安排我国古代数学著作《九章算术》中的问题,展现我国古人在勾股定理应用研究方面的成果。 本章也介绍了国外的有关研究成果。如勾股定理的发现是从与毕达哥拉斯有关传说故事引入的。又如勾股定理的逆定理从古埃及人画直角的方法引入。再如介绍古希腊哲学家柏拉图关于勾股数的结论。
标签:数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。