数学多边形的内角和教案

编辑:sx_chenj

2013-10-30

兴趣可以使人集中注意,如果要让学生感兴趣,教师就要饱含情感。威廉希尔app 编辑了数学多边形的内角和教案,欢迎阅读!

教学建议

  1.教材分析

  (1)知识结构:

  (2)重点和难点分析:

  重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

  难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

  2.教法建议

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

  (3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。


 教学目标:

  1.使学生掌握四边形的有关概念及四边形的内角和定理;

  2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;

  3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;

  4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

  教学重点:


  四边形的内角和定理.


  教学难点:

  四边形的概念

  教学过程:

  (一)复习

  在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

  (二)提出问题,引入新课

  利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)

  问题:你能类比三角形的概念,说出四边形的概念吗?

  (三)理解概念

  1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

  在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

  2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

  3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

  练习:课本124页1、2题.

  4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

  5.四边形的对角线:

  (四)四边形的内角和定理

  定理:四边形的内角和等于 .

  注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.


上面就是为大家准备的数学多边形的内角和教案,希望对各位老师有所帮助!

相关推荐

中心对称和中心对称图形教案

数学三角形全等的判定教案设计

标签:数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。