数学矩形教案

编辑:sx_chenj

2013-10-30

数学学科具有全球性、开放性、实践性等特点。威廉希尔app 编辑了数学矩形教案,希望能为各位教师提供到帮助。

教学建议

  知识结构

  重难点分析

  本节的重点是矩形的性质和判定定理。矩形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一个角是直角”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。矩形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

  本节的难点是矩形性质的灵活应用。由于矩形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是矩形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

  教法建议

  根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

  1.矩形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

  2.矩形在现实中的实例较多,在讲解矩形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

  3. 如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

  4. 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

  5. 由于矩形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.


  6.在矩形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。



矩形教学设计

教学目标

  1.知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。

  2.能运用以上性质进行简单的证明和计算。

  此外,从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。

引导性材料

  想一想:一般四边形与平行四边形之间的相互关系?在图4.5-l的圆圈中填上“四边形”和“平行四边形”的字样来说明这种关系:即平行四边形是特殊的四边形,又具有一般四边形的一切性质;具有一些特殊的性质。

  小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在图4.5-1中再画一个圈表示矩形,这个圈应画在哪里?

  (让学生初步感知矩形与平行四边形的从属关系。)

  演示:用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示如图4.5-2,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形(矩形)。

  问题1:从上面的演示过程,可以发现:平行四边形具备什么条件时,就成了矩形?

  说明与建议:教师的演示应充分展现变化过程,从而让学生深切地感受到短形是无数个平行四边形中的一个特例,同时,又使学生能正确地给出矩形的定义。

  问题2:矩形是特殊的平行四边形,它除了“有一个角是直角”以外,还可能具有哪些平行四边形所没有的特殊性质呢?

  说明与建议:让学生分组探索,有必要时,教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形“有一个角是直角”矩形的四个角都相等(矩形性质定理1),要学生给以证明(即课本例1后练习第1题)。

上面就是为大家准备的数学矩形教案,希望各位教师能有好的教学方式。

相关推荐

三角形的中位线教案

数学三角形全等的判定教案设计

标签:数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。