2015-2016初一上册数学第二单元知识点:整式

编辑:sx_jixia

2015-09-07

对于初中学生朋友,学习是一个循序渐进的过程,需要日积月累。威廉希尔app 提供了初一上册数学第二单元知识点,希望对大家学习有所帮助。

整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。

无限不循环小数和开根开不尽的数叫无理数 ,比如π,3.1415926535897932384626......

而有理数恰恰与它相反,整数和分数统称为有理数

包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。

这一定义在数的十进制和其他进位制(如二进制)下都适用。

数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。

所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。

有理数分为整数和分数

整数又分为正整数、负整数和0

分数又分为正分数、负分数

正整数和0又被称为自然数

如3,-98.11,5.72727272……,7/22都是有理数。

全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。

有理数集是实数集的子集。相关的内容见数系的扩张。

有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):

①加法的交换律 a+b=b+a;

②加法的结合律 a+(b+c)=(a+b)+c;

③存在数0,使 0+a=a+0=a;

④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;

⑤乘法的交换律 ab=ba;

⑥乘法的结合律 a(bc)=(ab)c;

⑦分配律 a(b+c)=ab+ac;

⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a1=a;

⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。

⑩0a=0 文字解释:一个数乘0还于0。

此外,有理数是一个序域,即在其上存在一个次序关系≤。

有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。

值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。

提供的初一上册数学第二单元知识点,是我们精心为大家准备的,希望大家能够合理的使用!

相关推荐

人教版七年级上册数学知识点之《合并同类项》  

人教版七年级数学上册知识点总结(第一章) 

标签:数学知识点

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。