初一数学探索类同步训练练习题

编辑:sx_houhong

2014-03-07

以下是数学探索类同步训练练习题

已知x,y是两个有理数,其倒数的和、差、积、商的四个结果中,有三个是相等的,

(1)填空:x与y的和的倒数是 ;

(2)说明理由.

【解析】

设x,y的倒数分别为a,b(a≠0,b≠0,a+b≠a-b),

则a+b,a-b,ab,a/b中若有三个相等,ab=a/b,即b??=1,b=±1

分类如下:

①当a+b=ab=a/b时:如果b=1,无解;如果b=-1,解得a=0.5

②当a-b=ab=a/b时:如果b=1,无解;如果b=-1,解得a=-0.5

所以x、y的倒数和为a+b=-0.5,或-1.5

二、【考点】有理数计算、分数拆分、方程思想 【难度】★★★★

【清华附中期中】

解答题:有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能表示为3个连续的正整数的和,求这8个连续的正整数中最大数的最小值。(4分)

【解析】

设这八个连续正整数为:n,n+1……n+7;和为8n+28

可以表示为七个连续正整数为:k,k+1……k+6;和为7k+21

所以8n+28=7k+21,k=(8n+7)/7=n+1+n/7,k是整数

所以n=7,14,21,28……

当n=7时,八数和为84=27+28+29,不符合题意,舍

当n=14时,八数和为140,符合题意

【答案】最大数最小值:21

三、【考点】有理数计算 【难度】★★★★☆

【清华附中期中】

在数1,2,3,4……1998,前添符号“+”或“-”,并依次运算,所得可能的最小非负数是多少?(6分)

【解析】

最小的非负数为“0”,但是1998个正数中有999个奇数,999个偶数,他们的和或者差结果必为奇数,因此不可能实现“0”

可以实现的最小非负数为“1”,如果能实现结果“1”,则符合题意

相邻两数差为1,所以相邻四个数可以和为零,即n-(n+1)-(n+2)+n+3=0

从3,4,5,6……1998共有1996个数,可以四个连续数字一组,和为零

【答案】

-1+2+3-4-5+6+7……+1995-1996-1997+1998=1

【改编】

在数1,2,3,4……n,前添符号“+”或“-”,并依次运算,所得可能的最小非负数是多少?

【解析】

由上面解析可知,四个数连续数一组可以实现为零

如果n=4k,结果为0;(四数一组,无剩余)

如果n=4k+1,结果为1;(四数一组,剩余首项1)

如果n=4k+2,结果为1;(四数一组,剩余首两项-1+2=1)

如果n=4k+3,结果为0;(四数一组,剩余首三项1+2-3=0)

四、【考点】绝对值化简 【难度】★★★★☆

【101中学期中】

将1,2,3,…,100这100个自然数,任意分成50组,每组两个数,现将每组中的两个数记为a,b,代入

中进行计算,求出结果,可得到50个值,则这50个值的和的最小值为____

【解析】

绝对值化简得:当a≥b时,原式=b;当a

所以50组可得50个最小的已知自然数,即1,2,3,4……50

【答案】1275

【改编】

这50个值的和的最大值为____

【解析】

因为本质为取小运算,所以100必须和99一组,98必须和97一组,最后留下的50组结果为:1,3,5,7……99=2500

以上是数学探索类同步训练练习题

相关推荐:

七年级数学线段角单元测试题及答案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。