编辑:
2016-01-16
二、填空题(每小题2分,共20分)
9.在﹣5.3和6.2之间所有整数之和为 6 .
考点: 有理数的加法;有理数大小比较.
专题: 计算题.
分析: 找出在﹣5.3和6.2之间所有整数,求出之和即可.
解答: 解:在﹣5.3和6.2之间所有整数为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,
之和为﹣5﹣4﹣3﹣2﹣1+0+1+2+3+4+5+6=6,
故答案为:6
点评: 此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.
10.京沪高铁全长约1318公里,将1318公里用科学记数法表示为 1.318×103 公里.
考点: 科学记数法—表示较大的数.
分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答: 解:1318=1.318×103,
故答案为:1.318×103.
点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
11.若关于x的方程2x+a=0的解为﹣3,则a的值为 6 .
考点: 一元一次方程的解.
专题: 计算题.
分析: 把x=﹣3代入方程计算即可求出a的值.
解答: 解:把x=﹣3代入方程得:﹣6+a=0,
解得:a=6,
故答案为:6
点评: 此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
12.已知两个单项式﹣3a2bm与na2b的和为0,则m+n的值是 4 .
考点: 合并同类项.
分析: 根据合并同类项,可得方程组,根据解方程组,kedem、n的值,根据 有理数的加法,可得答案.
解答: 解:由单项式﹣3a2bm与na2b的和为0,得
.
n+m=3+1=4,
故答案为:4.
点评: 本题考查了合并同类项,合并同类项得出方程组是解题关键.
13.固定一根木条至少需要两根铁钉,这是根据 两点确定一条直线 .
考点: 直线的性质:两点确定一条直线.
分析: 根据直线的性质:两点确定一条直线进行解答.
解答: 解:固定一根木条至少需要两根铁钉,这是根据:两点确定一条直线,
故答案为:两点确定一条直线.
点评: 此题主要考查了直线的性质,关键是掌握两点确定一条直线.
14.若∠A=68°,则∠A的余角是 22° .
考点: 余角和补角.
分析: ∠A的余角为90°﹣∠A.
解答: 解:根据余角的定义得:
∠A的余角=90°﹣∠A=90°﹣68°=22°.
故答案为22°.
点评: 本题考查了余角的定义;熟练掌握两个角的和为90°是关键
15.在数轴上,与﹣3表示的点相距4个单位的点所对应的数是 1或﹣7 .
考点: 数轴.
分析: 根据题 意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可.
解答: 解:分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;
②当点在表示﹣3的点的右边时,数为﹣3+4=1;
故答案为:1或﹣7.
点评: 本题考查了数轴的应用,注意符合条件的有两种情况.
16.若|a|=3,|b|=2,且a+b>0,那么a﹣b的值是 5,1 .
考点: 有理数的减法;绝对值.
分析: 根据绝对值的性质.
解答: 解:∵|a|=3,|b|=2,且a+b>0,
∴a=3,b=2或a=3,b=﹣2;
∴a﹣b=1或a﹣b=5.
则a﹣b的值是5,1.
点评: 此题应注意的是:正数和负数的绝对值都是正数.如:|a|=3,则a=±3.
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。