2016学年初中一年级数学期末模拟试题

编辑:

2016-01-16

22.(2014秋•吉林校级期末)∠BOC=60°,OE平分∠AOC,OF平分∠BOC,若AO⊥BO,则∠EOF是多少度?

考点: 垂线;角平分线的定义.

分析: 根据垂线的定义,可得∠AOB的度数,根据角的和差,可得∠AOC的度数,根据角平分线的性质,可得∠COE、∠COF的度数,根据角的和差,可得答案.

解答: 解:由AO⊥BO,得∠AOB=90°,

由角的和差,得∠AOC=∠AOB+∠BOC=150°.

由OE平分∠AOC,OF平分∠BOC,得∠COE= ∠AOC= ×150°=75°,∠COF= ∠BOC= ×60°=30°.

由角的和差,得∠EOF=∠COE﹣∠COF=75°﹣30°=45°.

点评: 本题考查了垂线,利用了垂线的定义,角平分线的定义,角的和差.

23.(2012•锦州二模) 如图,直线AB∥CD,∠A=100°,∠C=75°,则∠E等于 25 °.

考点: 平行线的性质.

专题: 探究型.

分析: 先根据平行线的性质求出∠EFD的度数,再由三角形外角的性质得出结论即可.

解答: 解:∵直线AB∥CD,∠A=100°,

∴∠EFD=∠A=100°,

∵∠EFD是△CEF的外角,

∴∠E=∠EFD﹣∠C=100°﹣75°=25°.

故答案为:25.

点评: 本题考查的是平行线的性质,即两直线平行,同位角相等.

24.(2005•安徽)如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.

考点: 平行线的性质;角平分线的定义;对顶角、邻补角.

专题: 计算题.

分析: 根据角平分线的定义,两直线平行内错角相等的性质解答即可.

解答: 解:∵∠EMB=50°,

∴∠BMF=180°﹣∠EMB=130°.

∵MG平分∠BMF,

∴∠BMG= ∠BMF=65°,

∵AB∥CD,

∴∠1=∠BMG=65°.

点评: 主要考查了角平分线的定义及平行线的性质,比较简单.

25.(2014秋•吉林校级期末)将一副直角三角尺(即直角三角形AOB和直角三角形COD)的直角顶点O的重合,其中,在△AOB中,∠A=60°,∠B=30°,∠AOB=90°;在△COD中,∠C=∠D=45°,∠COD=90°.

(1)如图1,当OA在∠COD的外部,且∠AOC=45°时,①试说明CO平分∠AOB; ②试说明OA∥CD(要求书写过程);

(2)如图2,绕点O旋转直角三角尺AOB,使OA在∠COD的内部,且CD∥OB,试探索∠AOC=45°是否成立,并说明理由.

考点: 平行线的判定与性质;角的计算.

分析: (1)①当∠AOC=45°时,根据条件可求得∠COB=45°可说明CO平分∠AOB;②设CD、OB交于点E,则可知OE=CE,可证得OB⊥CD,结合条件可证明OA∥CD;

(2)由平行可得到∠D=∠BOD=45°,则可得到∠AOD=45°,可得到结论.

解答: 解:(1)①∵∠AOB=90°,∠AOC=45°,

∴∠COB=90°﹣45°=45°,

∴∠AOC=∠COB,

即OC平分∠AOB;

②如图,设CD、OB交于点E,

∵∠C=45°,

∴∠C=∠COB,

∴∠CEO=90°,

∵∠AOB=90°,

∴∠AOB+∠OEC=180°,

∴AO∥CD;

(2)∠AOC=45°,理由如下:

∵CD∥OB,

∴∠DOB=∠D=45°,

∴∠AOD=90°﹣∠DOB=45°,

∴∠AOC=90°﹣∠AOD=45°.

点评: 本题主要考查平行线的判定和性质,掌握平行线的判定方法和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.

希望这篇初中一年级数学期末模拟试题,可以帮助更好的迎接即将到来的考试!

相关推荐

初一年级第一学期语文期末考试卷(2016届)

2015-2016初一年级语文上册期末试卷(含答案) 

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。