2016学年初中一年级数学期末模拟试题

编辑:

2016-01-16

二.填空题(共6小题,每题3分)

9.(2014•湘西州)如图,直线AB和CD相交于点O,OE平分∠DOB,∠AOC=40°,则∠DOE= 20° 度.

考点: 对顶角、邻补角;角平分线的定义.

分析: 由∠AOC=40°,根据对顶角相等求出∠DOB=40°,再根据角平分线定义求出∠DOE即可.

解答: 解:∵∠AOC=40°,

∴∠DOB=∠AOC=40°,

∵OE平分∠DOB,

∴∠DOE= ∠BOD=20°,

故答案为:20°.

点评: 本题考查了对顶角的性质角、角平分线定义的应用,关键是求出∠BOD的度数.

10.(2014•连云港)如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= 31° .

考点: 平行线的性质.

分析: 根据两直线平行,同位角相等可得∠EFD=∠1,再根据角平分线的定义可得∠2= ∠EFD.

解答: 解:∵AB∥CD,

∴∠EFD=∠1=62°,

∵FG平分∠EFD,

∴∠2= ∠EFD= ×62°=31°.

故答案为:31°.

点评: 本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.

11.(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 80 度.

考点: 平行线的性质.

专题: 计算题.

分析: 根据平行线的性质求出∠C,根据三角形外角性质求出即可.

解答: 解:∵AB∥CD,∠1=45°,

∴∠C=∠1=45°,

∵∠2=35°,

∴∠3=∠∠2+∠C=35°+45°=80°,

故答案为:80.

点评: 本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.

12.(2014•齐齐哈尔)已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为 9 .

考点: 代数式求值.

专题: 整体思想.

分析: 把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.

解答: 解:∵x2﹣2x=5,

∴2x2﹣4x﹣1

=2(x2﹣2x)﹣1,

=2×5﹣1,

=10﹣1,

=9.

故答案为:9.

点评: 本题考查了代数式求值,整体思想的利用是解题的关键.

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。