编辑:
2015-09-16
三、解答题(本题共4小题,共54分)
15.(12分)计算:
(1)将24.29°化为度、分、秒;
(2)将36°40′30″化为度.
16.(7分)请以给定的图形“ ”(两个圆,两个三角形,两条线段)构思独特而且又有意义的图形,并且写上一句 贴切的解说词.
17.(8分)已知线段a,b(如图),画出线段x,使x=a+2b.
18.(8分)已知在平面内,∠AOB=70°,∠BOC=40°,求∠AOC的度数.
19.(9分)如图,已知AB和CD的公共部分BD= AB= CD.线段AB,CD的中点E,F之间的距离是10 cm,求AB,CD的长.
20.(10分)某摄制组从A市到B市有一天的路程,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一(原计划行驶到C地),过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C地到这里路程的二分之一就到达目的地了,问A,B两市相距多少千米?
参考答案
1答案:D
2答案:D
3答案:A
4答案:C 点拨:因为 平角= ×180°=120°,所以 平角是钝角,故选C.
5答案:A 点拨:∠1=180°-26°30′=153°30′.
6答案:C 点拨:说法①④错误.
7答案:D
8答案:B
9答案:D 点拨:分别计算各选项中的用时可知,从景点A 到景点C用时最少的线路是A→B→E→C,故选D.
10答案:A
11答案:短 两点之 间,线段最短
12答案:2 点拨:∵AB=10,AC=6,∴BC=AB-AC=10-6=4.又∵点D是线段BC的中点,
∴CD= BC=2.
13答案:160° 点拨:可画出钟表的示意图帮助解答(如图).观察图可知,9点20分时,时针和分针的夹角是5个大格加时针从9点开始转过的角度,所以9点20分时,时针和分针的夹角是5×30°+20×0.5°=160°.
14答案:10 点拨:由泰山到青岛的某一次列车的车票的种数是:泰山——济南,泰山——淄博,泰山——潍坊,泰山——青岛;济南——淄博,济南——潍坊,济南——青岛;淄博——潍坊,淄博——青岛;潍坊——青岛,共10种.
15解:(1)先将0.29°化为17.4′,再将0.4′化为24″.
24.29°=24°+0.29×60′
=24°+17′+0.4×60″=24°+17′+24″
=24°17′24″.
(2)先将30″化为0.5′,再将40.5′化为0.675°.
∵1′= ,1″= ,
∴ 30″= ×30=0.5′,40.5′= ×40.5=0.675°.
∴36°40′30″=36.675°.
16解:以下答案供参考.
17答案:略
18解:(1)当∠BOC在∠AOB的外部时,如图1所示,∠AOC=∠AOB+∠BOC=70°+40°=110°;
(2)当∠BOC在∠AOB的内部时,如图2所示,∠AOC=∠AOB-∠BOC=70°-40°=30°.
故∠AOC的度数为110°或30°.
19解:设BD=x cm, 则AB=3x cm,CD=4x cm.
因为E,F分别是线段AB,CD的中点,
所以EB= AB=1.5x,FD= CD=2x.
又EF=10 cm,EF=EB+FD-BD,
所以1.5x+2x-x=10.
解得x=4.
所以3x=12,4x=16.
所以AB长12 cm ,CD长16 cm.
20解:如图,设小镇为D,傍晚汽车在E处休息,由题意知,DE=400千米,AD= DC,EB= CE,AD+EB= (DC+CE)= DE= ×400=200(千米).
所以AB=AD+EB+DE=600(千米).
答:A,B两市相距600千米.
这篇七年级上册数学第四章单元测试题的内容,希望会对各位同学带来很大的帮助。
相关推荐
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。