2015七年级数学期末复习题

编辑:

2015-01-10

A.1 B. ﹣1 C. 9 D. ﹣9

11.(2014•宁波)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是(  )

A.五棱柱 B. 六棱柱 C. 七棱柱 D. 八棱柱

12.(2014•无锡)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画(  )

A.6条 B. 7条 C. 8条 D. 9条

二.填空题(共6小题,每小题4分,共24分)

13.(2012•南昌)一个正方体有 _________ 个面.

14.(2011•邵阳)请写出一个方程的解是2的一元一次方程: _________ .

15.(2013•贵港)若超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作 _________ 克.

16.(2014•咸宁)体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y元.则代数式500﹣3x﹣2y表示的实际意义是 _________ .

17.(2014•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.

(Ⅰ)计算AC2+BC2的值等于 _________ ;

(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明) _________ .

18.(2007•宁德)若 ,则 = _________ .

三.解答题(共8小题,19-20每题7分,21-24每题10分,25-26每题12分,共78分)

19.(2006•吉林)已知关于x的方程3a﹣x= +3的解为2,求代数式(﹣a)2﹣2a+1的值.

20.(2013•柳州)解方程:3(x+4)=x.

21.(2011•连云港)计算:(1)2×(﹣5)+22﹣3÷ .

22.(2009•杭州)如果a,b,c是三个任意的整数,那么在 , , 这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由.

23.(2009•杭州)在杭州市中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了:22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高,如果他所参加的10场比赛的平均得分超过18分.

(1)用含x的代数式表示y;

(2)小方在前5场比赛中,总分可达到的最大值是多少;

(3)小方在第10场比赛中,得分可达到的最小值是多少?

24.(2014•无锡)(1)如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证: = .(这个比值 叫做AE与AB的黄金比.)

(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.

(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)

25.(2006•凉山州)如图所示,图①~图④都是平面图形

(1)每个图中各有多少个顶点?多少条边?这些边围出多少个区域?请将结果填入表格中.

(2)根据(1)中的结论,推断出一个平面图形的顶点数、边数、区域数之间有什么关系.

26.(2008•乐山)阅读下列材料:

我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;

这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;

在解题中,我们会常常运用绝对值的几何意义:

例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;

例2:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;

例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。