初一奥数期末自测题(二)及答案解析

编辑:sx_bij

2013-06-04

【摘要】多做练习题和试卷,可以使学生了解各种类型的题目,使学生在练习中做到举一反三。在此威廉希尔app 为您提供“初一奥数期末自测题(二)及答案解析”,希望给您学习带来帮助,使您学习更上一层楼!

初一奥数期末自测题(二)及答案解析

1.已知3x2-x=1,求6x3+7x2-5x+2000的值.

2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?

3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:

DA⊥AB.

4.已知方程组

的解应为

一个学生解题时把c抄错了,因此得到的解为

求a2+b2+c2的值.

5.求方程|xy|-|2x|+|y|=4的整数解.

6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(已知一年期定期储蓄年利率为5.22%)

7.对k,m的哪些值,方程组

至少有一组解?

8.求不定方程3x+4y+13z=57的整数解.

9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?

答案解析:

1.原式=2x(3x2-x)+3(3x2-x)-2x+2000

=2x×1+3×1-2x+2000

=2003.

2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则

y =(4+x)(100-10x)

=400+100x-40x-10x2

=-10(x2-6x+9)+90+400

=-10(x-3)2+490.

所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.

3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以

∠ADC+∠BCD=180°,

所以                AD∥BC.

又因为               AB⊥BC,

由①,②

AB⊥AD.

4.依题意有

所以       a2+b2+c2=34.

5.|x||y|-2|x|+|y|=4,即

|x|(|y|-2)+(|y|-2)=2,

所以

(|x|+1)(|y|-2)=2.

因为|x|+1>0,且x,y都是整数,所以

所以有

6.设王平买三年期和五年期国库券分别为x元和y元,则

因为             y=35000-x,

所以

x(1+0.0711×3)(1+0.0522)2

+(35000-x)(1+0.0786×5)=47761,

所以

1.3433x+48755-1.393x=47761,

所以            0.0497x=994,

所以            x=20000(元),

y=35000-20000=15000(元). 来

7.因为

(k-1)x=m-4, ①

m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.

当k=1,m≠4时,①无解.

所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.

8.由题设方程得

z=3m-y.

x=19-y-4(3m-y)-m

=19+3y-13m.

原方程的通解为

其中n,m取任意整数值.

9.设苹果、梨子、杏子分别买了x,y,z个,则

消去y,得12x-5z=180.它的解是

x=90-5t,z=180-12t.

代入原方程,得y=-230+17t.故

x=90-5t,y=-230+17t,z=180-12t.

x=20,y=8,z=12.

因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。