编辑:sx_bij
2013-05-30
【摘要】多做练习题和试卷,可以使学生了解各种类型的题目,使学生在练习中做到举一反三。在此威廉希尔app 为您提供“2013年七年级下册数学期中试卷”,希望给您学习带来帮助,使您学习更上一层楼!
2013年七年级下册数学期中试卷
一、选择题:(共10小题,每小题2分,共20分)
1.在同一平面内,两条直线的位置关系是
A.平行. B.相交. C.平行或相交. D.平行、相交或垂直
2.点P(-1,3)在
A.第一象限. B.第二象限. C.第三象限. D.第四象限.
3.下列各图中,∠1与∠2是对顶角的是
4.如图,将左图中的福娃“欢欢”通过平移可得到图为
A. B. C. D.
5.若 ,则点P(x,y)一定在
A.x轴上. B.y轴上. C.坐标轴上. D.原点.
6.二元一次方程 有无数多组解,下列四组值中不是该方程的解的是
A. B. C. . D.
7.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD 的是
A.∠3=∠4. B.∠B=∠DCE.
C.∠1=∠2. D.∠D+∠DAB=180°.
8.下列说法正确的是
A、25的平方根是5 B、 的算术平方根是2
C、 的立方根是 D、 是 的一个平方根
9.下列命题中,是真命题的是
A.同位角相等 B.邻补角一定互补.
C.相等的角是对顶角. D.有且只有一条直线与已知直线垂直.
10.已知点P位于 轴右侧、 轴下方,距 轴3个单位长度,距离 轴4个单位长度,则点P坐标是
A、(3,4) B、(3,-4) C、(4, -3) D、(4,3)
二、填空题(共10小题,每小题3分,共30分)
11. 是 的平方根; 的算术平方根是 ; 64的立方根是 。
12. 将命题“过一点有且只有一条直线与已知直线垂直”改写成“如果……那么……”的形式:
_________________________。这是一个____命题。(填“真”或“假”)
13. 比较大小:
14. 把方程3x+y–1=0改写成用含x的式子表示y的形式得 .
15. 已知点P(5a-7,-6a-2)在第二、四象限的角平分线上,则a = 。
16. 一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是____________.
17.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOD-∠DOB=40°,则∠EOB=____________.
18.如图,象棋盘上,若“将”位于点(1,-1),“车”位于点(—3,-1),则“马”位于点
第17题图
19.已知 , ,则 ______________。
20.已知x、y满足方程组 ,则3x+6y+12 +4x-6y+23 的值为 .
三、解答题(共70分)
21.化简求值:(8分)
(1) × .
22.解方程(8分)
(1) (2)
22.解方程(8分)
23.(本题满分6分)
如图,P为∠AOB内一点:
(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;
(2)写出两个图中与∠O互补的角: ______________ ____________
(3)写出两个图中与∠O相等的角: ______________ _________
24.(本题6分) 24题图
完成下面推理过程:
如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代换).
∴CE∥BF(___________________ _____ ________).
∴∠ =∠C(____________________ ___________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代换).
∴AB∥CD(___________________________ __________).
25.(本题6分)
如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.
26.(本题8分)小丽想用一块面积为400 的正方形纸片,沿着边的方向裁出一块面积为300 的长方形纸片,使它的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗?通过计算说明。
27.(本题10分)
如图,在平面直角坐标系中有三个点A(-3,2)、B(﹣5,1)、C(-2,0),P(a,b)是△ABC的边AC上一点,△ABC经平移后得到△A1B1C1,点P的对应点为P1(a+6,b+2).
(1)画出平移后的△A1B1C1,写出点A1、C1的坐标;
(2)若以A、B、C、D为顶点的四边形为平行四边形,直接写出D点的坐标;
(3)求四边形ACC1A1的面积.
28.(本题8分)
如图,在三角形ABC中, AD⊥BC,EF⊥BC,垂足分别为D、F。G为AC上一点,E为AB上一点,
∠1+∠FEA=180°.
求证:∠CDG=∠B.
29.(本题12分)
如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且 .
(1)求a,b的值;
(2)①在y轴的正半轴上存在一点M,使△COM的面积=12△ABC的面积,求出点M的坐标;
②在坐标轴的其它位置是否存在点M,使△COM的面积=12△ABC的面积仍然成立,若存在,请直接写出符合条件的点M的坐标;
(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时, 的值是否会改变?若不变,求其值;若改变,说明理由.
参考答案
一、1. C 2. B 3. B 4.C 5. C 6. D 7.C 8.D 9. B 10. B
二、11. 3、2、4 12. 如果过一点做已知直线的垂线,那么这样的垂线有且只有一条。真
13. > 14.y=1-3x 15. -9
16.(3,2) 17.35° 18.(4,2) 19.578.9 20.4
三、21.(1)2.1 (2)-1
22.(1)X=±1/2 (2)X=2,Y=-1
23.(1)如图
…………………………………………2分
(2)∠PDO,∠PCO等,正确即可;……………………………4分
(3)∠PDB,∠PCA等,正确即可.……………………………6分
24.对顶角相等 同位角相等,两直线平行 BFD
两直线平行,同位角相等 BFD 内错角相等,两直线平行
25.∵EF∥AD,(已知)
∴∠ACB+∠DAC=180°.(两直线平行,同旁内角互补) …………1分
∵∠DAC=120°,(已知)
∴∠ACB=60°. ……………………………2分
又∵∠ACF=20°,
∴∠FCB=∠ACB-∠ACF=40°.……………………………3分
∵CE平分∠BCF,
∴∠BCE=20°.(角的平分线定义)……4分
∵EF∥AD,AD∥BC(已知),
∴EF∥BC.(平行于同一条直线的两条直线互相平行)………………5分
∴∠FEC=∠ECB.(两直线平行,同旁内角互补)
∴∠FEC=20°. ……………………………6分
26.解:设长方形纸片的长为3Xcm,宽为2Xcm.
3X•2X=300 ……………………………2分
X= ……………………………4分
因此,长方形纸片的长为3 cm. ……………………………5分
因为3 >21,……………………………6分
而正方形纸片的边长只有20cm,所以不能裁出符合要求的纸片。……………………………8分
27.解:(1)画图略, ……………………………2分
A1(3,4)、C1(4,2).……………………………4分
(2)(0,1)或(―6,3)或(―4,―1).……………………………7分
(3)连接AA1、CC1;
∵
∴四边形ACC1 A1的面积为:7+7=14.
也可用长方形的面积减去4个直角三角形的面积:
.
答:四边形ACC1 A1的面积为14.……………………………10分
28.证明:∵AD∥EF,(已知)
∴∠2=∠3.(两直线平行,同位角相等)……………………………2分
∵∠1+∠FEA=180°,∠2+∠FEA=180°,……………………………3分
∴∠1=∠2.(同角的补角相等)……………………………4分
∴∠1=∠3.(等量代换)
∴DG∥AB.(内错角相等,两直线平行)……6分
∴∠CDG=∠B.(两直线平行,同位角相等)……………………………8分
29.解:(1)∵ ,
又∵ ,
∴ .
∴ ∴
即 . ……………………………3分
(2)①过点C做CT⊥x轴,CS⊥y轴,垂足分别为T、S.
∵A(﹣2,0),B(3,0),∴AB=5,因为C(﹣1,2),∴CT=2,CS=1,
△ ABC的面积=12 AB•CT=5,要使△COM的面积=12 △ABC的面积,即△COM的面积=52 ,
所以12 OM•CS=52 ,∴OM=5.所以M的坐标为(0,5).……………6分
②存在.点M的坐标为 或 或 .………………9分
(3) 的值不变,理由如下:
∵CD⊥y轴,AB⊥y轴 ∴∠CDO=∠DOB=90°
∴AB∥AD ∴∠OPD=∠POB
∵OF⊥OE ∴∠POF+∠POE=90°,∠BOF+∠AOE=90°
∵OE平分∠AOP ∴∠POE=∠AOE ∴∠POF=∠BOF
∴∠OPD=∠POB=2∠BOF
∵∠DOE+∠DOF=∠BOF+∠DOF=90° ∴∠DOE=∠BOF
∴∠OPD =2∠BOF=2∠DOE
∴ .……………………………12分
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。