初一数学:因式分解单元测试及答案

编辑:chenc

2012-05-05

第九章 因式分解

一、分解因式

1.2x4y2-4x3y2+10xy4。

2. 5xn+1-15xn+60xn-1。

4. (a+b)2x2-2(a2-b2)xy+(a-b)2y2

5. x4-1

6.-a2-b2+2ab+4分解因式。

10.a2+b2+c2+2ab+2bc+2ac

11.x2-2x-8

12.3x2+5x-2

13. (x+1)(x+2)(x+3)(x+4)+1

14. (x2+3x+2)(x2+7x+12)-120.

15.把多项式3x2+11x+10分解因式。

16.把多项式5x2―6xy―8y2分解因式。

二证明题

17.求证:32000-4×31999+10×31998能被7整除。

18.设 为正整数,且64n-7n能被57整除,证明: 是57的倍数.

19.求证:无论x、y为何值, 的值恒为正。

20.已知x2+y2-4x+6y+13=0,求x,y的值。

三 求值。

21.已知a,b,c满足a-b=8,ab+c2+16=0,求a+b+c的值 .

22.已知x2+3x+6是多项式x4-6x3+mx2+nx+36的一个因式,试确定m,n的值,并求出它的其它因式。

因式分解精选练习答案

一分解因式

1. 解:原式=2xy2•x3-2xy2•2x2+2xy2•5y2

=2xy2 (x3-2x2+5y2)。

提示:先确定公因式,找各项系数的最大公约数2;各项相同字母的最低次幂xy2,即公因式2xy2,再把各项的公因式提到括号外面,把多项式写成因式的积。

2. 提示:在公因式中相同字母x的最低次幂是xn-1,提公因式时xn+1提取xn-1后为x2,xn提取xn--1后为x。

解:原式=5 xn--1•x2-5xn--1•3x+5xn--1•12

=5 xn--1 (x2-3x+12)

3.解:原式=3a(b-1)(1-8a3)

=3a(b-1)(1-2a)(1+2a+4a2)

提示:立方差公式:a3-b3=(a-b)( a2+ab+b2)

立方和公式:a3+ b3=(a+b)( a2-ab+b2)

所以,1-8 a3=(1-2a)(1+2a+4a2)

4.解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2

=(ax+bx-ay+by)2[

提示:将(a+b)x和(a-b)y视为 一个整体。

5.解:原式=( x2+1)( x2-1)

=( x2+1)(x+1)(x-1)

提示:许多同学分解到(x2+1)( x2-1)就不再分解了,因式分解必须分解到不能再分解为止。

6.解:原式=-(a2-2ab+b2-4)

=-(a-b+2)(a-b-2)

提示:如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。但也不能见负号就先“提”,要对全题进行分析.防止出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。

7. 解: 原式= x4-x3-(x-1)

= x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)2(x2+x+1)

提示:通常四项或者以上的因式分解,分组分的要合适,否则无法分解。另外,本题的结果不可写成(x-1)(x-1)( x2+x+1),能写成乘方的形式的,一定要写成乘方的形式。*使用了立方差公式,x3-1=(x-1)( x2+x+1)

8. 解:原式=y2[(x+y)2-12(x+y)+36]-y4

=y2(x+y-6)2-y4

=y2[(x+y-6)2-y2]

=y2(x+y-6+y)(x+y-6-y)

= y2(x+2y-6)(x-6)

9. 解:原式= (x+y)2(x2-12x+36)-(x+y)4

=(x+y)2[(x-6)2-(x+y)2]

=(x+y)2(x-6+x+y)(x-6-x-y)

=(x+y)2(2x+y-6)(-6-y)

= - (x+y)2(2x+y-6)(y+6)

10.解:原式=(a2+b2 +2ab)+2bc+2ac+c2

=(a+b)2+2(a+b)c+c2

=(a+b+c)2

提示:*将(a+b)视为 1个整体。

11.解:原式=x2-2x+1-1-8 *

=(x-1)2-32

=(x-1+3)(x-1-3)

= (x+2)(x-4)

提示:本题用了配方法,将x2-2x加上1个“1”又减了一个“1”,从而构成完全平方式。

12.解:原式=3(x2+ x)-2

=3(x2+ x+ - )-2 *

=3(x+ )2-3× -2

=3(x+ )2-

=3[(x+ )2- ]

=3(x+ + )(x+ - )

=3(x+2)(x- )

=(x+2)(3x-1)

提示:*这步很重要,根据完全平方式的结构配出来的。对于任意二次三项式ax2+bx+c(a≠0)可配成a(x+ )2+ .

13.解:原式=[(x+1)(x+4)][(x+2)(x+3)]+1

=( x2+5x+4)( x2+5x+6)+1

令x2+5x=a,则 原式=(a+4)(a+6)+1

=a2+10a+25

=(a+5)2

=(x2+5x+5)

提示:把x2+5x看成一个整体。

14. 解 原式=(x+2)(x+1)(x+4)(x+3)-120

=(x+2)(x+3)(x+1)(x+4)-120

=( x2+5x+6)( x2+5x+4)-120

令 x2+5x=m, 代入上式,得

原式=(m+6)(m+4)-120=m2+10m-96

=(m+16)(m-6)=( x2+5x+16)( x2+5x-6)=( x2+5x+16)(x+6)(x-1)

提示:把x2+5x看成一个整体。

15.解:原式=(x+2)(3x+5)

提示:把二次项3x2分解成x与3x(二次项一般都只分解成正因数),常数项10可分成1×10=-1×(-10)=2×5=-2×(-5),其中只有11x=x×5+3x×2。

说明:十字相乘法是二次三项式分解因式的一种常用方法,特别是当二次项的系数不是1的时候,给我们的分解带来麻烦,这里主要就是讲讲这类情况。分解时,把二次项、常数项分别分解成两个数的积,并使它们交叉相乘的积的各等于一次项。需要注意的是:⑴如果常数项是正数,则应把它分解成两个同号的因数,若一次项是正,则同正号;若一次项是负,则应同负号。⑵如果常数项是负数,则应把它分解成两个异号的因数,交叉相乘所得的积中,绝对值大的与一次项的符号相同(若一次项是正,则交叉相乘所得的积中,绝对值大的就是正号;若一次项是负,则交叉相乘所得的积中,绝对值大的就是负号)。

ax c

二次项         常数项

bx d

adx+bcx=(ad+bc)x 一次项

ab x2+(ad+bc)x+cd=(ax+c)(bx+d)

16. 解:原式=(x-2y)(5x+4y)

x -2y

5x 4y

-6xy

二证明题

17.证明: 原式=31998(32-4×3+10)= 31998×7,

∴ 能被7整除。

18.证明:

=8(82n-7n)+8×7n+7n+2

=8(82n-7n)+7n(49+8)

=8(82n-7n)+57 7n

是57的倍数.

19.证明:

=4 x2-12x+9+9 y2+30y+25+1

=(2x-3) 2+(3y+5) 2+1

≥1.

20.解:∵x2+y2-4x+6y+13=0

∴x2-4x+4+y2+6y+9=0

(x-2) 2+(y+3) 2=0

(x-2) 2≥0, (y+3) 2≥0.

x-2=0且y+3=0

x=2,y=-3

三 求值。

21.解:∵a-b=8

∴a=8+b

又ab+c2+16=0

即∴(b+8)b+c2+16=0

即(b+4)2+c2=0

又因为,(b+4) 2≥0,C2≥0,

∴b+4=0,c=0,

b=-4,c=0,a=b+8=4

∴a+b+c=0.

22. 解:设它的另一个因式是x2+px+6,则

X4-6x3+mx2+nx+36

=(x2+px+6)(x2+3x+6)

=x4+(p+3)x3+(3p+12)x2+(6p+18)x+36

比较两边的系数得以下方程组:

解得

人教版初 中数学函数章节教案

人教版七年级英 语上册第十二单元测试题

人教版七年级英语上册第十一单元测试题

人教版七年级英语上册第九单元测试题

人教版七年级英语上册第八单元测试题

人教版七年级英语上册第七单元测试题

人教版七年级英语上册第六单元测试题

人教版七年级数学期末试卷

人教版七年级英语上册第五单元测试题

人教版七年级英语上册第四单元测试题

人教版七年级英语上册第三单元测试题

人教版七年级英语上册第二单元测试题

人教版七年级英语上册第一单元测试题

人教版初一语文上册:《童趣》教案

人教版初一语文上册:《理想》教案

人教版初一语文上册:《短文两篇》教案

人教版初一语文上册:《人生寓言》教案

人教版初一语文上册:《我的信念》教案

人教版初一语文上册:《〈论语〉十则》教案

人教版初一数学上册大纲

人教版初一英语期末复习要点

人教版初一语文上册:《在山的那边》教案

人教版初一语文上册:《生命生命》教案

人教版初一语文上册:《紫藤萝瀑布》教案

人教版初一英语上学期6---10单元试题


 

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。