单项式的乘法教案

编辑:sx_liuwy

2012-12-26

 以下是威廉希尔app 为您推荐的1.6 单项式的乘法教案,希望本篇文章对您学习有所帮助。

1.6 单项式的乘法

教学目标:

1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算;

2.注意培养学生归纳、概括能力,以及运算能力.

教学重点和难点:

准确、迅速地进行单项式的乘法运算.

课堂教学过程设计

一、从学生原有认知结构提出问题

1.下列单项式各是几次单项式?它们的系数各是什么?

2.下列代数式中,哪些是单项式?哪些不是?

3.利用乘法的交换律、结合律计算6×4×13×25.

4.前面学习了哪三种幂的运算性质?内容是什么?

二、讲授新课

1.引导学生得出单项式的乘法法则

利用乘法交换律、结合律以及前面所学的幂的运算性质,计算下列单项式乘以单项式:

(1)2x2y•3xy2

=(2×3)(x2•x)(y•y2)

=6x3y3;

(利用乘法交换律、结合律将系数与系数,相同字母分别结合,有理数的乘法、同底数幂的乘法)

(2)4a2x5•(-3a3bx)

=[4×(-3)](a2•a3)•b•(x5•x)

=-12a5bx6.

(b只在一个单项式中出现,这个字母及其指数照抄)

学生练习,教师巡视,然后由学生总结出单项式的乘法法则:

单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

2.引导学生剖析法则

(1)法则实际分为三点:①系数相乘——有理数的乘法;②相同字母相乘——同底数幂的乘法;③只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.

(2)不论几个单项式相乘,都可以用这个法则.

(3)单项式相乘的结果仍是单项式.

三、应用举例 变式练习

例1 计算:

(1)(-5a2b3)(-3a);(2)(2x)3(-5x2y);

(3)(-3ab)(-a2c)2•6ab(c2)3.

解:(1)(-5a2b3)(-3a)

=[(-5)(-3)](a2•a)•b3

=15a3b3;

(2)(2x)3(-5x2y)

=8x3•(-5x2y)

=[8×(-5)](x3•x2)•y

=-40x5y;

(3)(-3ab)(-a2c)2•6ab(c2)3

=(-3ab)•a4c2•6abc6

=[(-3)×6]a6b2c8

=-18a6b2c8.

第(1)小题由学生口答,教师板演;第(2),(3),(4)小题由学生板演,根据学生板演情况,教师提醒学生注意:先做乘方,再做单项式相乘,中间过程要详细写出,待熟练后才可省略.

课堂练习

1.计算:

(1)3x5•5x3; (2)4y•(-2xy3); (3)(3x2y)3•(-4xy2);

(4)(-xy2z3)4•(-x2y)3; (5)(-6an+2)•3anb; (6)6abn•(-5an+1b2).

例2 光的速度每秒约为3×105千米,太阳光射到地球上需要的时间约是5×102秒,地球与太阳的距离约是多少千米?

解:(3×105)×(5×102)=15×107=1.5×108.

答:地球与太阳的距离约是1.5×108千米.

先由学生讨论解题的方法,然后由教师根据学生的回答板书.

课堂练习

一种电子计算机每秒可作108次运算,它工作5×102秒可作多少次运算?

四、小结

1.单项式的乘法法则可分为三点,在解题中要灵活应用.

2.在运算中要注意运算顺序.

相关推荐:

具有相反意义的量学案

有理数的加法与减法3

更多初一数学教案请关注威廉希尔app   

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。