初三上册数学知识点:一次函数图像的平移

编辑:sx_bilj

2017-11-16

鉴于数学知识点的重要性,小编为您提供了这篇初三上册数学知识点:一次函数图像的平移,希望对同学们的数学有所帮助。

我们知道,一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移∣b∣个单位长度得到(当b>0时,向上平移;当b<0时,向上平移).或者说,直线y=kx平移∣b∣个单位长度得到直线y=kx+b (当b>0时,向上平移;当b<0时,向下平移).例如,将直线y=-x向上平移3个单位长度就得到直线y=-x+3,将直线y=-x向下平移1个单位长度就可以得到直线y=-x-1.需要注意的是,函数图象的平移,既可以上下平移,也可以左右平移.这里所说的平移,是指函数图象的上下平移,而非左右平移.

以上平移比较简单,因为它是对最简单的一次函数即正比例函数进行平移.对于一个一般形式的一次函数图象又该怎样进行平移呢?让我们一起进行探究:

问题1 已知直线:y=2x-3,将直线向上平移2个单位长度得到直线,求直线的解析式.

分析:根据“两直线平行,对应函数的一次项系数相等”,可设直线的解析式为y=2x+ b,由于直线的解析式中只有一个未知数,因此再需一个条件即可.怎样得到这个条件呢?注意到直线与两条坐标轴分别交于两点,而直线

与y轴的交点易求,这样就得到一个条件,于是直线的解析式可求.

解:设直线的解析式为y=2x+b,直线交y轴于点(0,-3),向上平移2个单位长度后变为(0,-1).把(0,-1)坐标代入y=2x+b,得b=-1,从而直线的解析式为y=2x-1.

问题2 已知直线:y=2x-3,将直线向下平移2个单位长度得到直线,求直线的解析式.

答案:直线的解析式为y=2x-5.(解答过程请同学们自己完成)对比直线和直线直线的解析式可以发现:将直线:y=2x-3向上平移2个单位长度得到直线的解析式为:y=2x-3+2;将直线:y=2x-3向下平移2个单位长度得到直线的解析式为:y=2x-3-2.(此时你有什么新发现?)

问题3 已知直线:y=kx+b,将直线向上平移m个单位长度得到直线,求直线的解析式.

简解:设直线的解析式为y=kx+n,直线交y轴于点(0,b),向上平移m个单位长度后变为(0,b+m),把(0,b+m)坐标代入的解析式可得,n=b+m.从而直线的解析式为y=kx+b+m.

问题4 已知直线:y=kx+b,将直线向下平移m个单位长度得到直线,求直线的解析式.

答案:直线的解析式为y=kx+b-m.(解答过程请同学们自己完成)

由此我们得到:直线y=kx+b向上平移m(m为正)个单位长度得到直线y=kx+b+m,直线y=kx+b向下平移m(m为正)个单位长度得到直线y=kx+b-m,这是直线直线y=kx+b上下(或沿y轴)平移的规律.

这个规律可以简记为:

以上我们探究了直线y=kx+b的上下 (或沿y轴)的平移,如果直线y=kx+b不是上下(或沿y轴)平移,而是左右(或沿x轴)平移,又该怎样进行平移呢?Let,s go,让我们一起继续探究!

问题5 已知直线:y=3x-12,将直线向左平移5个单位长度得到直线,求直线的解析式.

简解:根据“两直线平行,对应函数的一次项系数相等”,可设直线的解析式为y=3x+b,直线交x轴于点(4,0),向左平移5个单位长度后变为(-1,0).把(-1,0)坐标代入y=3x+b,得b=3,从而直线的解析式为y=3x+3.

问题6 已知直线:y=3x-12,将直线向右平移5个单位长度得到直线,求直线的解析式.

答案:直线的解析式为y=3x-27.(解答过程请同学们自己完成)对比直线和直线直线的解析式可以发现:将直线:y=3x-12向左平移5个单位长度得到直线的解析式为:y=3(x+5)-12;将直线:y=3x-12向右平移5个单位长度得到直线的解析式为:y=3(x-5)-12.(此时你有什么新发现?)

标签:数学知识点

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。