编辑:
2016-03-11
22.(本题10分)如图,在一面靠墙的空地上用长为24米的篱 笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围;
(2)当x取何值时所围成的花圃面积最大,最大值是多少?
(3)若墙的最大可用长度为8米,求围成花圃的最大面积。
23.(本题10分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.
⑴如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
⑵如图2,当点D在边BC的延长线上时,其他条件不变, 请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并说明理由;
⑶如图3,当点D在边CB的延长线上 时,且点A、F分别在直线BC的异侧,其他条件不变,请直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
24.(本题12分)如图,抛物线 与x轴交A、B两点(A点在B点左侧),直线 与抛物线交于A、C两点,其中C点的横坐标为2;
(1)求A、B 两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
九年级数学单元练习(三)参考答案 2011.12
18.(本题6分)(36﹢12 )米;
19.(本题6分)(1)略; (2)∵P(奇数)=4∕9,P(偶数)=5∕9;
∴这个方案对双方不公平; (注:每小题3分)
20.(本题8分)(1)半径为6; (2)S阴影=6π-9 ; (注:每小题4分)
21.(本题8分)(1)略; (2)y= - x2+x; 当x=2时,BF=1;
(注:第①小题3分,第②小题关系式3分,X值2分)
22.(本题1 0分)(1)y﹦-4x2+24x (0
(3)∵24-4x≤8,∴ x≥4;又∵当x≥3时,S随x增大而减小;
∴当x﹦4时,S最大值﹦32(平方米);
(注:第①小题4分,第②小题3分,第③小题3分)
23.(本题10分)(1)①由⊿ADB≌⊿AFC可得;② 结论∠AFC=∠ACB+∠DAC成立;
(2)∵同理可证⊿ADB≌⊿AFC,∴∠AFC=∠ACB-∠DAC;
(3)∠AFC+∠ACB+∠DAC=180°(或∠AFC=2∠ACB -∠DAC等);
(注:第①小题4分,第②小题3分,第③小题3分)
24.(本题10分)(1)A (-1,0)、 B(3, 0);直线AC解析式为y﹦-X-1;
(2)设P点坐标(m ,-m-1),则E点坐标(m ,m2-2m-3);
∴PE= -m2+m+2 ,∴当m﹦ 时, PE最大值= ;
(3)F1(-3, 0)、 F2(1,0)、 F3(4+ , 0)、 F4(4- , 0);
(注:每小题4分)
为大家推荐的九年级下册数学单元练习测试题的内容,还满意吗?相信大家都会仔细阅读,加油哦!
相关推荐
标签:数学同步练习
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。