初三数学同步练习:概率复习试卷

编辑:

2014-02-27

19、如图,随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡同时发光的概率为

A. B. C. D.

20、一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为

A. B. C. D.

二、填空题()

21、五张分别写有3,4,5,6,7的卡片,现从中任意取出一张卡片,则该卡片上的数字为奇数的概率是       .

22、一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是    .

23、请写出一个概率小于的随机事件:        .

24、从1、2、3、4中任取一个数作为十位上的数字,再从2、3、4中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是       .

25、已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是     .

26、合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是   。

27、在一个布口袋里装有白、红、黑三种颜色的小球。它们除颜色外没有任何其他区别,其中白球5只、红球3只、黑球1只。袋中的球已经搅匀,闭上眼睛随机地从装中取出1只球,取出红球的概率是    。

28、某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则

选出一男一女的概率是    .

29、甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是       .

30、某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A、B、C三个队和县区学校的D,E,F,G,H五个队,如果从A,B,D,E四个队与C,F,G,H四个队中个抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是     .

31、在平面直角坐标系中,作△OAB,其中三个顶点分别为O(0,0),B(1,1)A(x,y)(均为整数),则所作△OAB为直角三角形的概率是       。

32、从3,0,-1,-2,-3这五个数中。随机抽取一个数,作为函数和关于x的方程中m的值,恰好使函数的图象经过第一、三象限,且方程有实数根的概率是

33、已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是     。

34、如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是       .

35、如图,若将飞镖投中一个被平均分成6份的圆形靶子,则落在阴影部分的概率是          .

三、计算题()

36、算式:1△1△1=□,在每一个“△”中添加运算符号“+”或“﹣”后,通过计算,“□”中可得到不同的运算结果.求运算结果为1的概率.

37、爸爸、妈妈和小明一家三人准备在下周六每人骑一辆车出行,家里有三辆车:自行车1、自行车2和电瓶车,小明只能骑自行车,爸爸、妈妈可以骑任意一辆车.

(1)请列举出他们出行有哪几种骑车方案;

(2)如果下周日三人继续这样每人骑一辆车出行,请用列表或画树状图的方法计算两次出行骑车方案相同的概率.(为了便于描述,骑车方案一、方案二 可以分别用、 来表示)

38、小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.

(1)用树状图或列表法求出小明先挑选的概率;

(2)你认为这个游戏公平吗?请说明理由.

39、掷一枚均匀的正方体骰子,6个面上分别标有数字1-6,随意掷出这个正方体,求下列事件发生的概率.

【小题1】掷出的数字恰好是奇数的概率

【小题2】掷出的数字大于4的概率;

【小题3】掷出的数字恰好是7的概率

【小题4】掷出的数字不小于3的概率.

四、解答题()

40、有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.

(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;

(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上上的概率.

41、小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.

(1)用列表法或画树状图法,求小丽参赛的概率.

(2)你认为这个游戏公平吗?请说明理由.

42、国家环保部发布的(环境空气质量标准)规定:居民区的PM2.5的年平均浓度不得超过35微克/立方米.PM2.5的24小时平均浓度不得超过75微克/立方米,某市环保部门随机抽取了一居民区去年若干天PM2.5的24小时平均浓度的监测数据,并统计如下:

PM浓度(微克/立方米) 日均值 频数(天) 频率

0

2.5

50

75

(1)求出表中a、b、c的值,并补全频数分布直方图.

(2)从样本里PM2.5的24小时平均浓度不低于50微克/立方米的天数中,随机抽取两天,求出“恰好有一天PM2.5的24小时平均浓度不低于75微克/立方米”的概率.

(3)求出样本平均数,从PM2.5的年平均浓度考虑,估计该区居民去年的环境是否需要改进?说明理由.

43、小勇收集了我省四张著名的旅游景点图片(大小、形状及背面完全相同):太原以南的壶口瀑布和平遥古城,太原以北的云岗石窟和五台山。他与爸爸玩游戏:把这四张图片背面朝上洗匀后,随机抽取一张(不放回),再抽取一张,若抽到两个景点都在太原以南或都在太原以北,则爸爸同意带他到这两个景点旅游,否则,只能去一个景点旅游。请你用列表或画树状图的方法求小勇能去两个景点旅游的概率(四张图片分别用(H,P,Y,W表示)。

44、把分别标有数字2、3、4、5的四个小球放入A袋内,把分别标有数字的五个小球放入B袋内,所有小球的形状、大小、质地完全相同,A、B两个袋子不透明。

(1)小明分别从A、B两个袋子中各摸出一个小球,求这两个小球上的数字互为倒数的概率;

(2)当B袋中标有的小球上的数字变为     时(填写所有结果),(1)中的概率为。

45、“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以”梦想中国”为主题的摄影大赛,要求参赛学生每人交一件作品,现将参赛的50件作品的成绩(单位:分)进行如下统计如下:

等级 成绩(用s表示) 频数 频率

A 90≤s≤100 x 0.08

B 80≤s<90 35 y

C s<80 11 0.22

合 计   50 1

请根据上表提供的信息,解答下列问题:

(1)表中x的值为     ,y的值为     ;

(2)将本次参赛作品获得A等级的学生一次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率。

46、“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为.

(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?

(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)

47、甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数 字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数 时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.

(1)用画树状图或列表的方法,求甲获胜的概率;

(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.

48、(2013年四川眉山9分)我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了解析统计,制作了如下两幅不完整的统计图.

(1)李老师采取的调查方式是   (填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共

件,其中B班征集到作品   ,请把图2补充完整.

(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出解析过程)

49、“中秋节”是我国的传统佳节,历来都有赏月,吃月饼的习俗。小明家吃过晚饭后,小明的母亲在桌子上放了四个包装纸盒完全一样的月饼,它们分别是2个豆沙,1个莲蓉和1个叉烧。

(1)小明随机拿一个月饼,是莲蓉的概率是多少?

(2)小明随机拿2个月饼,请用树形图或列表的方法表示所有可能的结果,并计算出没有拿到豆沙月饼的概率是多少?

50、(2013年广东梅州7分)如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)

(1)若点C与点A关于原点O对称,则点C的坐标为   ;

(2)将点A向右平移5个单位得到点D,则点D的坐标为   ;

(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。