编辑:
2014-08-14
7.(3分)(2014•岳阳)下列因式分解正确的是( )
A. x2﹣y2=(x﹣y)2 B. a2+a+1=(a+1)2 C. xy﹣x=x(y﹣1) D. 2x+y=2(x+y)
考点: 因式分解-运用公式法;因式分解-提公因式法.
分析: 分别利用公式法以及提取公因式法分解因式进而判断得出即可.
解答: 解:A、x 2﹣y2=(x+y)(x﹣y),故此选项错误;
B、a2+a+1无法因式分解,故此选项错误;
C、xy﹣x=x(y﹣1),正确;
D、2x+y无法因式分解,故此选项错误;
故选:C.
点评: 此题主要考查了公式法以及提取公因式法分解因式,熟练掌握乘法公式是解题关键.
8.(3分)(2014•岳阳)如图,已知点A是直线y=x与反比例函数y=(k>0,x>0)的交点,B是y=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为( )
A. B. C. D.
考点: 动点问题的函数图象.
分析: 根据点P的位置,分①点P在OA上时,四边形OMPN为正方形;②点P在反比例函数图象AB段时,根据反比例函数系数的几何意义,四边形OMPN的面积不变;③点P在BC段,设点P运动到点C的总路程为a,然后表示出四边形OMPN的面积,最后判断出函数图象即可得解.
解答: 解:设点P的运动速度为v,
①由于点A在直线y=x上,
故点P在OA上时,四边形OMPN为正方形,
四边形OMPN的面积S=(vt)2,
②点P在反比例函数图象AB时,
由反比例函数系数几何意义,四边形OMPN的面积S=k;
③点P在BC段时,设点P运动到点C的总路程为a,
则四边形OMPN的面积=OC•(a﹣vt)=﹣ t+ ,
纵观各选项,只有B选项图形符合.
故选:B.
点评: 本题考查了动点问题函数图象,读懂题目信息,根据点P的运动位置的不同,分三段表示出函数解析式是解题的关键.
二、填空题(本大题8道小题,每小题4分,满分32分)
9.(4分)(2014•岳阳)计算:﹣ = ﹣3 .
考点: 算术平方根.
分析: 根据算术平方根的定义计算即可得解.
解答: 解:﹣ =﹣3.
故答案为:﹣3.
点评: 本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.
10.(4分)(2014•岳阳)方程x2﹣3x+2=0的根是 1或2 .
考点: 解一元二次方程-因式分解法.
专题: 因式分解.
分析: 由题已知的方程进行因式分解,将原式化为两式相乘的形式,再根据两式相乘值为0,这两式中至少有一式值为0,求出方程的解.
解答: 解:因式分解得,(x﹣1)(x﹣2)=0,
解得x1=1,x2=2.
故答案为:1或2
点评: 本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.
11.(4分)(2014•岳阳)体育测试中,某班某一小组1分钟跳绳成绩如下:176,176,168,150,190,185,180(单位:个),则这组数据的中位数是 176 .
考点: 中位数.
分析: 找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
解答: 解:先对这组数据按从小到大的顺序重新排序:150,168,176,176,180,185,190.
位于最中间的数是176,
所以这组数据的中位数是176.
故答案为:176.
点评: 本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
12.(4分)(2014•岳阳)从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是 .
考点: 概率公式.
分析: 根据随机事件概率大小的求法,找准两点:
①符合条件的情况数目;
②全部情况的总数.
二者的比值就是其发生的概率的大小.
解答: 解:∵从1到9这九个自然数中一共有5个奇数,
∴任取一个,是奇数的概率是:,
故答案为:.
点评: 本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
标签:数学暑假作业
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。